Pressure Dependence of the Vapor−Liquid−Liquid Phase Behavior in Ternary Mixtures Consisting ofn-Alkanes,n-Perfluoroalkanes, and Carbon Dioxide

2005 ◽  
Vol 109 (7) ◽  
pp. 2911-2919 ◽  
Author(s):  
Ling Zhang ◽  
J. Ilja Siepmann
1981 ◽  
Vol 21 (04) ◽  
pp. 480-492 ◽  
Author(s):  
F.M. Orr ◽  
A.D. Yu ◽  
C.L. Lien

Abstract Phase behavior of CO2/Crude-oil mixtures which exhibit liquid/liquid (L/L) and liquid/ liquid/vapor (L/L/V) equilibria is examined. Results of single-contact phase behavior experiments for CO2/separator-oil mixtures are reported. Experimental results are interpreted using pseudoternary phase diagrams based on a review of phase behavior data for binary and ternary mixtures of CO2 with alkanes. Implications for the displacement process of L/L/V phase behavior are examined using a one-dimensional finite difference simulator. Results of the analysis suggest that L/L and L/L/V equilibria will occur for CO2/crude-oil mixtures at temperatures below about 120 degrees F (49 degrees C) and that development of miscibility occurs by extraction of hydrocarbons from the oil into a CO2-rich liquid phase in such systems. Introduction The efficiency of a displacement of oil by CO2 depends on a variety of factors, including phase behavior of CO2/crude-oil mixtures generated during the displacement, densities and viscosities of the phases present, relative permeabilities to individual phases, and a host of additional complications such as dispersion, viscous fingering, reservoir heterogeneities, and layering. It generally is acknowledged that phase behavior and attendant compositional effects on fluid properties strongly influence local displacement efficiency, though it also is clear that on a reservoir scale, poor vertical and areal sweep efficiency (caused by the low viscosity of the displacing CO2) may negate the favorable effects of phase behavior.Interpretation of the effects of phase behavior on displacement efficiency is made difficult by the complexity of the behavior of CO2/crude-oil mixtures. The standard interpretation of CO2 flooding phase behaviour, given first by Rathmell et al. is that CO2 flooding behaves much like a vaporizing gas drive, as described originally by Hutchinson and Braun. During a flood, vaporphase CO2 mixes with oil in place and extracts light and intermediate hydrocarbons. After multiple contacts, the CO2-rich phase vaporizes enough hydrocarbons to develop a composition that can displace oil efficiently, if not miscibly. The picture presented by Rathmell et al. appears to be consistent with phase behavior observed for CO2/ crudeoil mixtures as long as the reservoir temperature is high enough. Table 1 summarizes data reported for CO2/crude-oil mixtures. Of the 10 systems studied, all those at temperatures above 120 degrees F (50 degrees C) show only L/V equilibria while those below 120 degrees F exhibit L/L/V separations (Stalkup also reports two phase diagrams that are qualitatively similar to the other low-temperature diagrams but does not give temperatures). Thus, at temperatures not too far above the critical temperature of CO2 [88 degrees F (31 degrees C)], mixtures of CO2 and crude oil exhibit multiple liquid phases, and at some pressures L/L/V equilibria are observed. It has not been established whether Rathmell et al.'s interpretation of the process mechanism can be extended to cover the more complex phase behavior of low-temperature CO2/crude-oil mixtures. In a recent paper, Metcalfe and Yarborough argued critical temperature CO2 floods behave more like condensing gas drives, whereas Kamath et al. concluded that an increase in the solubility of liquid-phase CO2 in crude oil at temperatures near the critical temperature of CO2 should cause more efficient displacements of oil by CO2. SPEJ P. 480^


1983 ◽  
Vol 23 (04) ◽  
pp. 587-594 ◽  
Author(s):  
James P. Frimodig ◽  
Norman A. Reese ◽  
Craig A. Williams

Abstract Engineering methods are being developed to evaluate reservoir fluid systems for Suitability to CO2 flooding. This paper presents our evaluation procedure as applied to laboratory data for a high-pour-point [95 degrees F (35 degrees C)] oil from the Red Wash field in Utah. The data were obtained from phase behavior and slim tube experiments. The results of this work indicate that high pressures are required for a miscible displacement of the highly paraffinic. high-pour-point Red Wash oil. The minimum miscibility pressure (MMP) was found to be 4,650 psia (32 060 kPa), increasing only 5% to 4,900 psia (33 784 kPa) when the injected CO2 contains a 10 mol% nitrogen contaminant. These pressures are not currently economically obtainable in the Red Wash field. lntroduction The Red Wash field is located in Utah in the northeastern Uinta basin. With a comparatively low ultimate recovery predicted from primary depletion and waterflooding operations, the field is considered an attractive condidate for tertiary recovery methods. The work reported in this paper presents laboratory experiments and calculation techniques used in evaluating reservoir fluids for CO2 flooding. The laboratory work includes constant composition experiments, vapor/liquid equilibrium experiments, liquid-phase viscosity experiments, and slimtube multiple-contact miscibility experiments. Calculation techniques utilized a two-constant equation of state (EOS) to predict phase behavior and fluid properties. One CO2 source available in the area contains approximately 10 mol% nitrogen. To evaluate the effect of nitrogen contamination, experiments were performed with two different gases, one with and one without the nitrogen contaminant. Red Wash Oil/CO, Gas Physical Property Measurements Physical property data for the Red Wash oil/CO2 gas system were obtained from constant composition expansion (CCE), vapor/liquid equilibration (VLE), and liquid-phase viscosity experiments. CCE experiments were conducted to determine the pressure/composition behavior (bubble-point/dew-point envelope) of Red Wash oil and injection gases. VLE experiments measured vapor/liquid equilibrium constants (K values). Liquid-phase viscosities determine to what extent injection gases dissolved in the liquid phase affect the flow behavior of the reservoir oil. All experiments used Red Wash reservoir oil and two different injection gases. The first CO2 gas (Gas 1 ) was approximately 5 mol% methane and 95 mol % CO 2. The second CO2 gas (Gas 2) contained about 10 mol% nitrogen, 5 mol% methane, and 85 mol %, CO2. The exact compositions of Gases 1 and 2 and Red Wash reservoir oil are shown in Table 1. CCE Experiments A high-pressure visual PVT cell was used in the CCE experiments. All experiments were conducted at the reported reservoir temperature of 130 degrees F (54.4 degrees C). During each CCE the visual cell was loaded with measured volumes of Red Wash oil and injection gas. SPEJ P. 587^


AIChE Journal ◽  
2008 ◽  
Vol 54 (7) ◽  
pp. 1886-1894 ◽  
Author(s):  
Brian C. Attwood ◽  
Carol K. Hall

2011 ◽  
Vol 29 (8) ◽  
pp. 1589-1594
Author(s):  
Lin Wang ◽  
Fengpu Cao ◽  
Shanshan Liu ◽  
Hao Yang

Sign in / Sign up

Export Citation Format

Share Document