Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations

2010 ◽  
Vol 115 (5) ◽  
pp. 2476-2482 ◽  
Author(s):  
Abhishek K. Singh ◽  
Jianxin Lu ◽  
Rachel S. Aga ◽  
Boris I. Yakobson
2004 ◽  
Vol 837 ◽  
Author(s):  
Tae-Bum Lee ◽  
Daejin Kim ◽  
Seung-Hoon Choi ◽  
Eungsung Lee ◽  
Youjin Oh ◽  
...  

ABSTRACTIn order to explore rational designs and synthetic strategies toward efficient hydrogen storage materials, quantum mechanical calculations and grand canonical Monte Carlo simulations have been carried out on a series of the Metal-Organic Frameworks containing various organic linkers. The calculations for specific surface areas and the shape of frontier orbitals for various frameworks indicate that the hydrogen storage capacity is largely dependent on the effective surface area of the material, rather than the free volume. Based on the iso-electrostatic potential surface from density functional calculations and the theoretical amount of adsorbed hydrogen from the grand canonical Monte Carlo calculations, it was also found that the electron localization around the organic linker plays an important role in the hydrogen storage capacity of Metal-Organic Frameworks. The prediction of the modeling study is supported by the hydrogen adsorption experiments with IRMOF-1 and -3, revealing the more enhanced hydrogen storage capacity of IRMOF-3 compared with that of IRMOF-1 at 77 K and H2 1 atm.


2013 ◽  
Vol 27 (13) ◽  
pp. 1350095 ◽  
Author(s):  
WEI DAI ◽  
RUI LI ◽  
HAIQIN JIN ◽  
SHIFANG WANG

With the aid of molecular simulations, a new aluminum organic framework structure is designed, and the hydrogen storage capability of the designed structure is studied using grand canonical Monte Carlo technique. Results show that the hydrogen storage capacity of aluminum organic framework at 77 K and 1 MPa is about 430 hydrogen molecules per unit cell, the corresponding weight density be equivalent to 17.45 wt.%. The preferential adsorption site is located at the aluminum–oxygen cluster. Hydrogen molecules are preferentially distributed on the surface of Al ions. The complexation of organic linkers with Al ions is found to be in favor of the adsorption of hydrogen.


2008 ◽  
Vol 112 (27) ◽  
pp. 10294-10302 ◽  
Author(s):  
N. I. Papadimitriou ◽  
I. N. Tsimpanogiannis ◽  
A. Th. Papaioannou ◽  
A. K. Stubos

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Xiuying Liu ◽  
Jie He ◽  
Rui Li

The adsorption of hydrogen molecules on different zeolites at near room temperature and extremely high pressures has been simulated employing Grand Canonical Monte Carlo (GCMC) method. Some important physical amounts under different temperatures and pressures, such as adsorption isotherms, adsorption amounts, and isosteric heats were studied. We predict the storage capacity of hydrogen in ZON and CHA zeolites at different conditions. The results show that the hydrogen storage capacity of CHA is superior to that of ZON. The different hydrogen adsorption behavior between them is explained by the isosteric heats of adsorption at different temperatures. These results may help us to understand different hydrogen adsorption properties of these two zeolites, thus facilitate exploring new hydrogen storage candidates experimentally.


2020 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Maxim N. Popov ◽  
Thomas Dengg ◽  
Dominik Gehringer ◽  
David Holec

In this paper, we report the results of hydrogen adsorption properties of a new 2D carbon-based material, consisting of pentagons and octagons (Penta-Octa-Penta-graphene or POP-graphene), based on the Grand-Canonical Monte Carlo simulations. The new material exhibits a moderately higher gravimetric uptake at cryogenic temperatures (77 K), as compared to the regular graphene. We discuss the origin of the enhanced uptake of POP-graphene and offer a consistent explanation.


Sign in / Sign up

Export Citation Format

Share Document