scholarly journals High-Pressure Hydrogen Adsorption in the Zeolites: A Grand Canonical Monte Carlo Study

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Xiuying Liu ◽  
Jie He ◽  
Rui Li

The adsorption of hydrogen molecules on different zeolites at near room temperature and extremely high pressures has been simulated employing Grand Canonical Monte Carlo (GCMC) method. Some important physical amounts under different temperatures and pressures, such as adsorption isotherms, adsorption amounts, and isosteric heats were studied. We predict the storage capacity of hydrogen in ZON and CHA zeolites at different conditions. The results show that the hydrogen storage capacity of CHA is superior to that of ZON. The different hydrogen adsorption behavior between them is explained by the isosteric heats of adsorption at different temperatures. These results may help us to understand different hydrogen adsorption properties of these two zeolites, thus facilitate exploring new hydrogen storage candidates experimentally.

2013 ◽  
Vol 27 (13) ◽  
pp. 1350095 ◽  
Author(s):  
WEI DAI ◽  
RUI LI ◽  
HAIQIN JIN ◽  
SHIFANG WANG

With the aid of molecular simulations, a new aluminum organic framework structure is designed, and the hydrogen storage capability of the designed structure is studied using grand canonical Monte Carlo technique. Results show that the hydrogen storage capacity of aluminum organic framework at 77 K and 1 MPa is about 430 hydrogen molecules per unit cell, the corresponding weight density be equivalent to 17.45 wt.%. The preferential adsorption site is located at the aluminum–oxygen cluster. Hydrogen molecules are preferentially distributed on the surface of Al ions. The complexation of organic linkers with Al ions is found to be in favor of the adsorption of hydrogen.


2020 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Maxim N. Popov ◽  
Thomas Dengg ◽  
Dominik Gehringer ◽  
David Holec

In this paper, we report the results of hydrogen adsorption properties of a new 2D carbon-based material, consisting of pentagons and octagons (Penta-Octa-Penta-graphene or POP-graphene), based on the Grand-Canonical Monte Carlo simulations. The new material exhibits a moderately higher gravimetric uptake at cryogenic temperatures (77 K), as compared to the regular graphene. We discuss the origin of the enhanced uptake of POP-graphene and offer a consistent explanation.


Carbon ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 2715-2724 ◽  
Author(s):  
A. Gotzias ◽  
H. Heiberg-Andersen ◽  
M. Kainourgiakis ◽  
Th. Steriotis

2007 ◽  
Vol 124-126 ◽  
pp. 1693-1696 ◽  
Author(s):  
Dong Hyun Jung ◽  
Dae Jin Kim ◽  
Tae Bum Lee ◽  
Ja Heon Kim ◽  
Seung Hoon Choi

We performed grand canonical Monte Carlo simulations on the series of MOFs, that are Metal-Organic Frameworks having various organic linkers and nanocube frameworks, to find out rational design and synthetic strategies toward efficient hydrogen storage materials. The adsorption amounts of hydrogen molecules showed diverse range according to the variation of parameter values. This indicated that the hydrogen adsorption was sensitive to the values of parameters corresponding to the non-bonding interactions. The optimization of the parameters was done to fit the experimental results at 77 K. After the parameterization of the potential function, we adopted this condition to predict the adsorption amount of hydrogen molecules on IRMOF-3, which has NH2 group as the substituent of hydrogen bonded to benzene ring. The calculation results showed good agreement with experimental adsorptions and we analyzed the adsorption sites of each MOF and the relationship between the adsorption characteristics and the hydrogen uptake capacity.


2004 ◽  
Vol 837 ◽  
Author(s):  
Tae-Bum Lee ◽  
Daejin Kim ◽  
Seung-Hoon Choi ◽  
Eungsung Lee ◽  
Youjin Oh ◽  
...  

ABSTRACTIn order to explore rational designs and synthetic strategies toward efficient hydrogen storage materials, quantum mechanical calculations and grand canonical Monte Carlo simulations have been carried out on a series of the Metal-Organic Frameworks containing various organic linkers. The calculations for specific surface areas and the shape of frontier orbitals for various frameworks indicate that the hydrogen storage capacity is largely dependent on the effective surface area of the material, rather than the free volume. Based on the iso-electrostatic potential surface from density functional calculations and the theoretical amount of adsorbed hydrogen from the grand canonical Monte Carlo calculations, it was also found that the electron localization around the organic linker plays an important role in the hydrogen storage capacity of Metal-Organic Frameworks. The prediction of the modeling study is supported by the hydrogen adsorption experiments with IRMOF-1 and -3, revealing the more enhanced hydrogen storage capacity of IRMOF-3 compared with that of IRMOF-1 at 77 K and H2 1 atm.


2012 ◽  
Vol 472-475 ◽  
pp. 2059-2063
Author(s):  
Xiu Ying Liu ◽  
Jun De Zhang ◽  
Zhi Qin Fan ◽  
Wei Guo Sun ◽  
Guang Sheng Kang

Zeolites belong to a most prominent class of nanoporous materials which have been considered as potential sorbents for hydrogen storage. The adsorption of hydrogen molecules on MFI, MOR and LTA zeolites, which encompass a range of different pore structure and chemical composition, has been simulated employing Grand Canonical Monte Carlo (GCMC) method. We compare their capacities of hydrogen storage at different temperatures and pressures. The results show that the adsorbed amounts is in order of LTA>MOR>MFI at the same condition. The effects of pore structure of zeolites, temperature and pressure on the hydrogen adsorption has been examined. The results clearly show that: (1) the temperature effect on the adsorption decreases with decreasing in the number of hydrogen molecules adsorbed. (2) A large volume of micropores and a suitable diameter near to the kinetic diameter of a hydrogen molecule are important for improving the hydrogen-storage capacity of zeolites. Based on this, we can conclude that the LTA zeolite with a large pore volume and a suitable channel diameter exhibits a most efficient hydrogen storage capacity than MOR and MFI zeolites.


Sign in / Sign up

Export Citation Format

Share Document