The Role of Intermolecular Hydrogen Bonding and Proton Transfer in Proton-Coupled Electron Transfer

2011 ◽  
Vol 115 (21) ◽  
pp. 10797-10805 ◽  
Author(s):  
Timothy M. Alligrant ◽  
Julio C. Alvarez
2020 ◽  
Vol 117 (12) ◽  
pp. 6484-6490 ◽  
Author(s):  
Hanna Kwon ◽  
Jaswir Basran ◽  
Juliette M. Devos ◽  
Reynier Suardíaz ◽  
Marc W. van der Kamp ◽  
...  

In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.


2018 ◽  
Vol 9 (4) ◽  
pp. 910-921 ◽  
Author(s):  
Senthil Kumar Thiyagarajan ◽  
Raghupathy Suresh ◽  
Vadivel Ramanan ◽  
Perumal Ramamurthy

The incognito role of solvent water as a proton transfer bridge in a multi-site electron proton transfer process was depicted.


2020 ◽  
Vol 22 (36) ◽  
pp. 20922-20928
Author(s):  
Ronny Cheng ◽  
Chun Wu ◽  
Zexing Cao ◽  
Binju Wang

The nitrite reduction in copper nitrite reductase is found to proceed through an asynchronous proton-coupled electron transfer (PCET) mechanism, with electron transfer from T1-Cu to T2-Cu preceding the proton transfer from Asp98 to nitrite.


2012 ◽  
Vol 5 (7) ◽  
pp. 7704 ◽  
Author(s):  
Christopher J. Gagliardi ◽  
Aaron K. Vannucci ◽  
Javier J. Concepcion ◽  
Zuofeng Chen ◽  
Thomas J. Meyer

Sign in / Sign up

Export Citation Format

Share Document