ZnO–TiO2 Nanocomposite Films for High Light Harvesting Efficiency and Fast Electron Transport in Dye-Sensitized Solar Cells

2012 ◽  
Vol 116 (45) ◽  
pp. 23864-23870 ◽  
Author(s):  
Venkata Manthina ◽  
Juan Pablo Correa Baena ◽  
Guangliang Liu ◽  
Alexander G. Agrios
RSC Advances ◽  
2014 ◽  
Vol 4 (91) ◽  
pp. 50295-50300 ◽  
Author(s):  
M. Pazoki ◽  
J. Oscarsson ◽  
L. Yang ◽  
B. W. Park ◽  
E. M. J. Johansson ◽  
...  

Mesoporous TiO2 microbead films have been investigated as working electrode for solid state dye sensitized solar cells and 3.5% efficiency was achieved. Low trap density of microbead film leads to high voltage and fast electron transport.


RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45180-45184 ◽  
Author(s):  
Xiaolin Liu ◽  
Min Guo ◽  
Jia Lin ◽  
Xianfeng Chen ◽  
Haitao Huang

A bi-layered TiO2 nanotube membrane possessing fast electron transport and light scattering is used in a photoanode of DSSCs.


2007 ◽  
Vol 19 (8) ◽  
pp. 1138-1141 ◽  
Author(s):  
Z.-S. Wang ◽  
Y. Cui ◽  
K. Hara ◽  
Y. Dan-oh ◽  
C. Kasada ◽  
...  

2018 ◽  
Vol 34 (5) ◽  
pp. 2292-2304
Author(s):  
S. Dheivamalar ◽  
K. Bansura banu

In this study, the electronic and structural properties of drum structured Mo-doped Zn6O6 (MoZn5O6) cluster as the π conjugated bridging in the dye-sensitized solar cells (DSSC) were compared with its pristine form by density functional theory (DFT) calculations under Gaussian 09 Program. The frontier molecular orbital study was explored to determine the charge transport characteristics of donor-acceptor moieties over the entire visible range and the electron injection from the valence band (LUMO) orbital to the conduction band (HOMO) orbital of MoZn5O6. The energy gap (Eg), binding energy (EB), global reactivity descriptors, thermodynamic parameters and the dipole moment were also calculated for MoZn5O6 and compared with Zn6O6. The density of states (DOS) of MoZn5O6 material was investigated to demonstrate the importance of d orbital of Mo atom in hybridization. To examine the charge distribution, Mulliken atomic charge distribution and molecular electrostatic potential (MEP) were analyzed. A spectroscopic study was included for the better perception of the interaction of Mo with Zn6O6 cluster. The increased value of the first-order hyperpolarizability of MoZn5O6 from its pure clustermanifests the MoZn5O6 is a better candidate with the superior nonlinear optical property. The analysis of UV-Vis spectra through the time-dependent density functional theory (TD-DFT) discovers that the MoZn5O6 has larger light harvesting efficiency (LHE) which influences the higher photon to current conversion efficiency. As a result, the valence band (LUMO) of MoZn5O6 is intense than the conduction band (HOMO) of MoZn5O6 making an increase in the open circuit voltage (VOC) and hence it confirms that the MoZn5O6 material can be a used in photovoltaic applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43328-43333 ◽  
Author(s):  
Jingyi Bai ◽  
Rongfang Zhao ◽  
Gui Han ◽  
Zhongcui Li ◽  
Guowang Diao

1D upconversion CeO2:Er, Yb nanofibers, which absorb NIR light and upconvert it to visible light to increase the photocurrent of DSSCs, have been fabricated by an electrospinning method. An enhancement of 14% in the light harvesting efficiency was observed.


Sign in / Sign up

Export Citation Format

Share Document