Ab Initio Molecular Dynamics of High-Temperature Unimolecular Dissociation of Gas-Phase RDX and Its Dissociation Products

2015 ◽  
Vol 119 (12) ◽  
pp. 2747-2759 ◽  
Author(s):  
Igor V. Schweigert
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5206
Author(s):  
Dmitry Bocharov ◽  
Inga Pudza ◽  
Konstantin Klementiev ◽  
Matthias Krack ◽  
Alexei Kuzmin

Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced anharmonicity of Zn–O bonding was observed above 600 K. The values of mean-square relative displacements and mean-square displacements for Zn–O and Zn–Zn atom pairs were obtained as a function of interatomic distance and temperature. They were used to calculate the characteristic Einstein temperatures. The temperature dependences of the O–Zn–O and Zn–O–Zn bond angle distributions were also determined.


RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 36038-36047
Author(s):  
QingQing Wang ◽  
WenLang Luo ◽  
XiaoLi Wang ◽  
Tao Gao

There are two kinds of plutonium surface corrosion, one of which is oxidation between plutonium and oxygen or oxygen compounds.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1212
Author(s):  
Pouya Partovi-Azar ◽  
Thomas Kühne

We demonstrate how to fully ascribe Raman peaks simulated using ab initio molecular dynamics to specific vibrations in the structure at finite temperatures by means of Wannier functions. Here, we adopt our newly introduced method for the simulation of the Raman spectra in which the total polarizability of the system is expressed as a sum over Wannier polarizabilities. The assignment is then based on the calculation of partial Raman activities arising from self- and/or cross-correlations between different types of Wannier functions in the system. Different types of Wannier functions can be distinguished based on their spatial spread. To demonstrate the predictive power of this approach, we applied it to the case of a cyclohexane molecule in the gas phase and were able to fully assign the simulated Raman peaks.


2020 ◽  
Vol 22 (19) ◽  
pp. 10738-10752 ◽  
Author(s):  
Christian Dreßler ◽  
Daniel Sebastiani

The high temperature phases of the solid acids CsHSeO4, CsHSO4 and CsH2PO4 show extraordinary high proton conductivities, which are enabled by the interplay of high proton transfer rates and frequent anion reorientation.


Sign in / Sign up

Export Citation Format

Share Document