Flow in "Unsaturated" Porous Media Due to Water-Insoluble Surfactants: Role of Momentum Transfer from a Spreading Monolayer

Langmuir ◽  
1994 ◽  
Vol 10 (10) ◽  
pp. 3701-3704 ◽  
Author(s):  
Milind V. Karkare ◽  
Tomlinson Fort
Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3541
Author(s):  
Theodosia V. Fountouli ◽  
Constantinos V. Chrysikopoulos

This study examines the effects of two representative colloid-sized clay particles (kaolinite, KGa-1b and montmorillonite, STx-1b) on the transport of formaldehyde (FA) in unsaturated porous media. The transport of FA was examined with and without the presence of clay particles under various flow rates and various levels of saturation in columns packed with quartz sand, under unsaturated conditions. The experimental results clearly suggested that the presence of clay particles retarded by up to ~23% the transport of FA in unsaturated packed columns. Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy calculations demonstrated that permanent retention of clay colloids at air-water interfaces (AWI) and solid-water interfaces (SWI) was negligible, except for the pair (STx-1b)–SWI. The experimental results of this study showed that significant clay colloid retention occurred in the unsaturated column, especially at low flow rates. This deviation from DLVO predictions may be explained by the existence of additional non-DLVO forces (hydrophobic and capillary forces) that could be much stronger than van der Waals and double layer forces. The present study shows the important role of colloids, which may act as carriers of contaminants.


2008 ◽  
Vol 96 (1-4) ◽  
pp. 113-127 ◽  
Author(s):  
Saeed Torkzaban ◽  
Scott A. Bradford ◽  
Martinus Th. van Genuchten ◽  
Sharon L. Walker

2005 ◽  
Vol 8 (3) ◽  
pp. 281-297 ◽  
Author(s):  
B. Markicevic ◽  
D. Litchfield ◽  
D. Heider ◽  
Suresh G. Advani

Author(s):  
Swayamdipta Bhaduri ◽  
Pankaj Sahu ◽  
Siddhartha Das ◽  
Aloke Kumar ◽  
Sushanta K. Mitra

The phenomenon of capillary imbibition through porous media is important both due to its applications in several disciplines as well as the involved fundamental flow physics in micro-nanoscales. In the present study, where a simple paper strip plays the role of a porous medium, we observe an extremely interesting and non-intuitive wicking or imbibition dynamics, through which we can separate water and dye particles by allowing the paper strip to come in contact with a dye solution. This result is extremely significant in the context of understanding paper-based microfluidics, and the manner in which the fundamental understanding of the capillary imbibition phenomenon in a porous medium can be used to devise a paper-based microfluidic separator.


Sign in / Sign up

Export Citation Format

Share Document