Small-Angle X-ray Scattering from the Lamellar Phase Formed in a Nonionic Surfactant (C16E7)−Water System. Analysis of Peak Position and Line Shape

Langmuir ◽  
2001 ◽  
Vol 17 (6) ◽  
pp. 1864-1871 ◽  
Author(s):  
Koji Minewaki ◽  
Tadashi Kato ◽  
Hirohisa Yoshida ◽  
Masayuki Imai ◽  
Kazuki Ito
2004 ◽  
Vol 250 (1-3) ◽  
pp. 485-490 ◽  
Author(s):  
Itaru Yamashita ◽  
Youhei Kawabata ◽  
Tadashi Kato ◽  
Masakatsu Hato ◽  
Hiroyuki Minamikawa

2006 ◽  
Vol 39 (5) ◽  
pp. 749-751 ◽  
Author(s):  
Byeongdu Lee ◽  
Chieh-Tsung Lo ◽  
Soenke Seifert ◽  
Randall E. Winans

Grazing-incidence small-angle X-ray scattering (GISAXS) patterns of a silver behenate composite film, which has a typical layered structure, are described. The peak position of the film in the GISAXS pattern was varied depending on the incident angle, which was well described by taking into account the refraction and the reflection effects. Since the refractive index of samples depends on sample preparation, it is recommended that the measurement of silver behenate as a standard be done in conventional transmission mode to avoid any complexity.


2016 ◽  
Vol 49 (5) ◽  
pp. 1412-1419 ◽  
Author(s):  
Christopher D. Putnam

The Guinier region in small-angle X-ray scattering (SAXS) defines the radius of gyration,Rg, and the forward scattering intensity,I(0). In Guinier peak analysis (GPA), the plot ofqI(q)versus q2transforms the Guinier region into a characteristic peak for visual and automated inspection of data. Deviations of the peak position from the theoretical position in dimensionless GPA plots can suggest parameter errors, problematic low-resolution data, some kinds of intermolecular interactions or elongated scatters. To facilitate automated analysis by GPA, the elongation ratio (ER), which is the ratio of the areas in the pair-distribution functionP(r) after and before theP(r) maximum, was characterized; symmetric samples have ER values around 1, and samples with ER values greater than 5 tend to be outliers in GPA analysis. Use of GPA+ER can be a helpful addition to SAXS data analysis pipelines.


1970 ◽  
Vol 23 ◽  
pp. 74-81
Author(s):  
Lok Kumar Shrestha

Structure of nonionic surfactant diglycerol monomyristate (C14G2) micelles in cyclohexane has been investigated by small-angle X-ray scattering (SAXS) technique. Structural modulation of reverse micelle (RM) has been systematically studied by changing composition, temperature change and added-water. The SAXS data were evaluated by the generalized indirect Fourier transformation (GIFT) method, which gives pair-distance distribution function (PDDF). Unlike conventional poly(oxyethylene) type nonionic surfactants, C14G2 forms RM in cyclohexane without water addition at normal room temperature. A clear indication of one dimensional (1-D) micellar growth was found with increasing C14G2 concentrations. On the other hand, temperature induced cylinder-to-sphere type transition in the RM structure. The maximum dimension and the cross-sectional diameter of the RM increased upon addition of trace water indicating the formation of water pool in the reverse micellar core.Keywords: Diglycerol monomyristate, small-angle X-ray scattering, reverse micelles.DOI: 10.3126/jncs.v23i0.2099J. Nepal Chem. Soc., Vol. 23, 2008/2009Page: 74-81


Sign in / Sign up

Export Citation Format

Share Document