water addition
Recently Published Documents


TOTAL DOCUMENTS

526
(FIVE YEARS 159)

H-INDEX

34
(FIVE YEARS 8)

Author(s):  
Marcello Alinovi ◽  
Massimiliano Rinaldi ◽  
Maria Paciulli ◽  
Paola Littardi ◽  
Emma Chiavaro

AbstractIn breadmaking, dietary fibres are used to improve the nutritional quality of the final products; on the other hand, they may affect the physical and sensory properties. This work aimed to the evaluate, on pan breads, the effect of substituting 3 g of wheat flour with an equivalent amount of fibre rich ingredients: chestnut peels (CP) or wheat bran (WB), in comparison to a traditional wheat bread formulation (C). The effect of four levels of added water (54, 60, 66, 71 g/100 of flour) was also tested. The fibre content of CP (33%) and WB (42%) affected their water binding capacity and, consequently, the quality of the final loaves, according to the different water addition levels. In bread crumb, water content and water activity increased proportionally to the water addition levels, being instead in the crust also affected by the presence of fibres: lower water retention capacity was observed for CP, in comparison to WB and C. The loaf volume resulted higher for C in comparison to WB and CP, in relation to the larger dimensions of the crumb pores, probably due to the interfering effect of fibres during the development of the gluten network. Crumb hardness resulted higher for C at low water addition levels, being instead higher for CP at high water addition levels. CP showed a darker and redder colour, than both WB and C bread, for the presence of the brown pigments carried by chestnut peels. PCA analysis confirmed that more water is required for both the fibre-enriched breads to show characteristics similar to the control loaves.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 229
Author(s):  
Clara Luisa Domínguez-Delgado ◽  
Zubia Akhtar ◽  
Godfrey Awuah-Mensah ◽  
Braden Wu ◽  
Hugh David Charles Smyth

Emulsification-diffusion method is often used to produce polymeric nanoparticles. However, their numerous and/or lengthy steps make it difficult to use widely. Thus, a modified method using solvent blends (miscible/partially miscible in water, 25–100%) as the organic phases to overcome these disadvantages and its design space were investigated. To further simplify the process, no organic/aqueous phase saturation and no water addition after the emulsification step were performed. Biodegradable (PLGA) or pH-sensitive (Eudragit® E100) nanoparticles were robustly produced using low/medium shear stirring adding dropwise the organic phase into the aqueous phase or vice versa. Several behaviors were also obtained: lowering the partially water-miscible solvent ratio relative to the organic phase or the poloxamer-407 concentration; or increasing the organic phase polarity or the polyvinyl alcohol concentration produced smaller particle sizes/polydispersity. Nanoparticle zeta potential increased as the water-miscible solvent ratio increased. Poloxamer-407 showed better performance to decrease the particle size (~50 nm) at low concentrations (≤1%, w/v) compared with polyvinyl alcohol at 1–5% (w/v), but higher concentrations produced bigger particles/polydispersity (≥600 nm). Most important, an inverse linear correlation to predict the particle size by determining the solubility parameter was found. A rapid method to broadly prepare nanoparticles using straightforward equipment is provided.


Author(s):  
Alar Heinsaar ◽  
Indrek Kivi ◽  
Priit Moller ◽  
Kuno Kooser ◽  
Tanel Käämbre ◽  
...  

Abstract (La0.6Sr0.4)0.99CoO3−δ is a very promising cathode material due to its excellent electronic and ionic conductivity. However, when using non-artificial air from the ambient atmosphere, it contains impurities such as H2O and CO2. These chemicals cause degradation and performance loss of the cathode. Introduction of Ti into the B-site of (La0.6Sr0.4)0.99CoO3−δ improves the chemical stability of this material. (La0.6Sr0.4)0.99Co1−xTixO3−δ (0 ≤ x ≥ 0.1) electrodes prepared in this work were analyzed using X-ray diffraction method (XRD), X-ray photoelectron spectroscopy (XPS), and with electrochemical impedance spectroscopy (EIS). Studied (La0.6Sr0.4)0.99CoO3−δ materials with Ti in B-site showed reversible degradation under gas mixture with carbon dioxide addition. Under gas mixture with water addition, improved stability was observed for (La0.6Sr0.4)0.99Co1−xTixO3−δ materials with Ti in B-site compared to unmodified (La0.6Sr0.4)0.99CoO3−δ.


2021 ◽  
Vol 2 (5) ◽  
pp. 14-27
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu ◽  
Marius Florin Dragoescu

The paper presents experimental results obtained in the process of experimental manufacture in a microwave oven of lightweight granulated glass aggregates. The process was conducted to obtain the highest dimensional class (between 18-23 mm), the almost spherical shape of the aggregates being facilitated by cold processing of raw spherical pellets (between 11-15 mm) containing the powder mixture formed by glass waste, borax. calcium carbonate, aqueous sodium silicate solution and water addition and then rotation of the high electromagnetic wave susceptible ceramic crucible containing raw pellets during the heat treatment at temperatures between 822-835 ºC. In terms of quality, the expanded glass aggregate granules are almost similar to those manufactured in conventional rotary kilns heated by burning fuel, having the following characteristics: bulk density of 0.17 g/cm3, compressive strength of 2.2 MPa, thermal conductivity of 0.047 W/m·K, water absorption of 1 vol. % and pore size between 0.3-0.6 mm. The experimental product has not yet been tested as a raw material in the manufacture of some light weight concretes, but the use of similar granulated glass aggregates manufactured in the world confirms the ability of this aggregate type to produce light weight and energy efficient concretes for building construction.  


2021 ◽  
Author(s):  
John Simmie

This work documents the properties of a number of isomers of molecular formula C2H5NO from the most stable, acetamide, through 1,2-oxazetidine and including even higher energy species largely of a dipolar nature. Only two of the isomers have been detected in emissions from the interstellar medium (ISM); possible further candidates are identifi�ed and the likelihood of their being detectable are considered. In general hardly any of these compounds have featured in the existing chemical literature so this work represents an important contribution extending the canon of chemical bonding which can contribute to machine-learning | providing a more exacting test of AI applications. The presence of acetamide, CH3C(O)NH2, is the subject of current debate with no clear and obvious paths to its formation; it is shown that a 1,3[H]-transfer from (E,Z ) ethanimidic acid, CH3C(OH){{NH, is feasible in spite of an energy barrier of 130 kJ/mol. It is speculated that the imidic acid can itself be formed from abundant precursors, H2O and CH3C{{{N, in an acid-induced, water addition, auto-catalytic reaction on water-ice grains.


2021 ◽  
Vol 2 (4) ◽  
pp. 40-52
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu ◽  
Marius Florin Dragoescu

The paper presents experimental results obtained in the process of experimental manufacture in a microwave oven of lightweight granulated glass aggregates. The process was conducted to obtain the highest dimensional class (between 18-23 mm), the almost spherical shape of the aggregates being facilitated by cold processing of raw spherical pellets (between 11-15 mm) containing the powder mixture formed by glass waste, borax. calcium carbonate, aqueous sodium silicate solution and water addition and then rotation of the high electromagnetic wave susceptible ceramic crucible containing raw pellets during the heat treatment at temperatures between 822-835 ºC. In terms of quality, the expanded glass aggregate granules are almost similar to those manufactured in conventional rotary kilns heated by burning fuel, having the following characteristics: bulk density of 0.17 g/cm3, compressive strength of 2.2 MPa, thermal conductivity of 0.047 W/m·K, water absorption of 1 vol. % and pore size between 0.3-0.6 mm. The experimental product has not yet been tested as a raw material in the manufacture of some light weight concretes, but the use of similar granulated glass aggregates manufactured in the world confirms the ability of this aggregate type to produce light weight and energy efficient concretes for building construction.


2021 ◽  
Author(s):  
John Simmie

This work documents the properties of a number of isomers of molecular formula C2H5NO from the most stable, acetamide, through 1,2-oxazetidine and including even higher energy species largely of a dipolar nature. Only two of the isomers have been detected in emissions from the interstellar medium (ISM); possible further candidates are identifi�ed and the likelihood of their being detectable are considered. In general hardly any of these compounds have featured in the existing chemical literature so this work represents an important contribution extending the canon of chemical bonding which can contribute to machine-learning | providing a more exacting test of AI applications. The presence of acetamide, CH3C(O)NH2, is the subject of current debate with no clear and obvious paths to its formation; it is shown that a 1,3[H]-transfer from (E,Z ) ethanimidic acid, CH3C(OH){{NH, is feasible in spite of an energy barrier of 130 kJ/mol. It is speculated that the imidic acid can itself be formed from abundant precursors, H2O and CH3C{{{N, in an acid-induced, water addition, auto-catalytic reaction on water-ice grains.


2021 ◽  
Vol 155 (A2) ◽  
Author(s):  
M I Lamas ◽  
C G Rodríguez ◽  
H P Aas

Marine engines represent a significant contribution to global emissions. In order to overcome this problem, a great attention was given to reduce their exhaust emissions in the last years, and marine engines have to adapt to regional, national and international restrictions. In this regard, the purpose of this paper is to develop a numerical model to study NOx (oxides of nitrogen) and other pollutants in engines. EGR and water addition were studied too as measures to reduce NOx. The main advantage of this study is that it provides a cheap and fast method to analyze emissions, contrary to experimental setups which are too expensive and laborious. Particularly, a commercial marine engine was analyzed and validated with experimental data. Results showed that increasing EGR and water addition leads to reduce NOx, but increase carbon monoxide and unburnt hydrocarbons due to an incomplete combustion.


Author(s):  
María Isabel Lamas Galdo ◽  
Javier Telmo Miranda ◽  
José Manuel Rebollido Lorenzo ◽  
Claudio Giovanni Caccia

The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.


Sign in / Sign up

Export Citation Format

Share Document