Measurement of heteronuclear coupling constants in organometallic complexes using high-resolution 2D NMR

1993 ◽  
Vol 12 (7) ◽  
pp. 2529-2535 ◽  
Author(s):  
Nick Bampos ◽  
Leslie D. Field ◽  
Barbara A. Messerle
1995 ◽  
Vol 14 (7) ◽  
pp. 3527-3530 ◽  
Author(s):  
Martin G. Partridge ◽  
Barbara A. Messerle ◽  
Leslie D. Field

2015 ◽  
Vol 51 (15) ◽  
pp. 3262-3265 ◽  
Author(s):  
Núria Marcó ◽  
André Fredi ◽  
Teodor Parella

A rapid acquisition strategy in terms of enhanced resolution per time unit for the simple and efficient determination of multiple coupling constants is proposed. The use of 13C spectral aliasing combined with pure shift NMR techniques allows accurate measurements of the magnitude and the sign from ultra high resolved 2D cross-peaks.


1989 ◽  
Vol 82 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Gaetano T Montelione ◽  
Marjorie E Winkler ◽  
Peter Rauenbuehler ◽  
Gerhard Wagner

1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


1969 ◽  
Vol 52 (5) ◽  
pp. 1074-1092 ◽  
Author(s):  
L H Keith ◽  
A L Alford ◽  
A W Garrison

Abstract The high resolution nuclear magnetic resonance spectra of the DDT class of pesticides and related compounds are discussed, including a study of the resonances of the aromatic protons as they are affected by various substiluents. The CCl3 moiety on the α-carbon strongly deshields the ortho protons on the aromatic rings, and this deshielding effect is greatly enhanced by substitution of a chlorine ortho rather than para on the aromatic ring. These deshielding effects are explained by a consideration of the electronegativity of the substituents and the stereochemistry of the molecule. The chemical shifts and coupling constants are tabulated.


1995 ◽  
Vol 60 (4) ◽  
pp. 619-635 ◽  
Author(s):  
Václav Křeček ◽  
Stanislav Hilgard ◽  
Miloš Buděšínský ◽  
Alois Vystrčil

A series of derivatives with various oxygen functionalities in positions 17,22a or 19,20 was prepared from diene I and olefin XVI by addition and oxidation reactions. The structure of the obtained compounds was confirmed by 1H NMR, 13C NMR and IR spectroscopy. The kind of intramolecular association of the 17α-hydroxy group was studied in connection with modification of the side chain and substitution in position 22a. Complete assignment of the hydrogen signals and most of the coupling constants was accomplished using a combination of 1D and 2D NMR techniques. The 1H and 13C NMR spectra are discussed.


1957 ◽  
Vol 35 (12) ◽  
pp. 1487-1495 ◽  
Author(s):  
W. G. Schneider ◽  
H. J. Bernstein ◽  
J. A. Pople

The proton resonance spectra of pyridine, 2,6-pyridine-d2, 3-pyridine-d1, and 4-pyridine-d1 have been obtained for the pure liquids under conditions of high resolution. The spectra have been analyzed as proton groupings of AB2X2, AB2, perturbed ABX, and B2X2 respectively. The spin-coupling constants obtained from analysis of the simpler spectra of the deuterated molecules were used to suggest trial solutions for the analysis of the complicated AB2X2 spectrum of pyridine. A final set of chemical shifts and spin-coupling constants derived for pyridine give satisfactory agreement between the observed and calculated spectrum.


1989 ◽  
Vol 85 (1) ◽  
pp. 111-131 ◽  
Author(s):  
Jeremy J Titman ◽  
David Neuhaus ◽  
James Keeler

Sign in / Sign up

Export Citation Format

Share Document