scholarly journals Initial photochemical fate of dissolved amino acids in natural aquatic environment by coupling theoretical calculations and experiments

Author(s):  
Daisuke Minakata ◽  
Ryan Kibler ◽  
Benjamin Barrios ◽  
Paul Doskey
2021 ◽  
Vol 7 (10) ◽  
pp. eabe4365
Author(s):  
Zihao Liu ◽  
Xingxing Li ◽  
Hiroshi Masai ◽  
Xinyi Huang ◽  
Susumu Tsuda ◽  
...  

One of the ultimate goals of analytic chemistry is to efficiently discriminate between amino acids. Here we demonstrate this ability using a single-molecule electrical methodology based on molecular nanocircuits formed from stable graphene-molecule-graphene single-molecule junctions. These molecular junctions are fabricated by covalently bonding a molecular machine featuring a permethylated-β-cyclodextrin between a pair of graphene point contacts. Using pH to vary the type and charge of the amino acids, we find distinct multimodal current fluctuations originating from the different host-guest interactions, consistent with theoretical calculations. These conductance data produce characteristic dwell times and shuttling rates for each amino acid, and allow accurate, statistical real-time, in situ measurements. Testing four amino acids and their enantiomers shows the ability to distinguish between them within a few microseconds, thus paving a facile and precise way to amino acid identification and even single-molecule protein sequencing.


Author(s):  
Vasilios A. Sakkas ◽  
Ioannis K. Konstantinou ◽  
Triantafyllos A. Albanis

2020 ◽  
Vol 21 (17) ◽  
pp. 6276
Author(s):  
Jiaoxue Yang ◽  
Guochun Lv ◽  
Chenxi Zhang ◽  
Zehua Wang ◽  
Xiaomin Sun

The bacteriostatic antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), have frequently been found in wastewater and surface water, which raises the concerns about their ecotoxicological effects. The indirect photochemical transformation has been proven to be an efficient way to degrade SMX and TMP. In this study, the reaction mechanisms of the degradation by SMX and TMF by OH radicals were investigated by theoretical calculations. Corresponding rate constants were determined and the eco-toxicity of SMX and TMP and its degradations products were predicted using theoretical models. The results indicate that the most favorable pathways for the transformation of SMX and TMP are both •OH-addition reaction of benzene ring site with lowest Gibbs free energy barriers (6.86 and 6.21 kcal mol−1). It was found that the overall reaction rate constants of •OH-initial reaction of SMX and TMP are 1.28 × 108 M−1 s−1 and 6.21 × 108 M−1 s−1 at 298 K, respectively. When comparing the eco-toxicity of transformation products with parent SMX and TMP, it can be concluded that the acute and chronic toxicities of the degraded products are reduced, but some products remain harmful for organisms, especially for daphnid (toxic or very toxic level). This study can give greater insight into the degradation of SMX and TMP by •OH through theoretical calculations in aquatic environment.


Sign in / Sign up

Export Citation Format

Share Document