sulfa drugs
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 29)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ahmed Wheed Radhi ◽  
Ezzat H. Zimam ◽  
Ali Jabbar Radhi

2021 ◽  
Vol 118 (34) ◽  
pp. e2104420118
Author(s):  
Catarina F. Almeida ◽  
Dylan G. M. Smith ◽  
Tan-Yun Cheng ◽  
Chris M. Harpur ◽  
Elena Batleska ◽  
...  

Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αβ T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug–like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αβTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1–TRAJ6) that was conserved across donors. By trapping a CD1d–type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.


Author(s):  
E. Vijaya Sekhar ◽  
Subhas S. Karki ◽  
Javarappa Rangaswamy ◽  
Mahesh Bhat ◽  
Sujeet Kumar

Abstract Background Sulfonamides (sulfa drugs) and the metals like mercury, copper, and silver bear antimicrobial properties. The discovery of broad-spectrum antibiotics such as penicillins, cephalosporins, and fluoroquinolones has reduced their use. However, in some instances these drugs are the first-line treatment. The metal-based sulfonamide (e.g., silver sulfadiazine) is considered as first choice treatment in post-burn therapy while the use of silver nanoparticle-cephalexin conjugate to cure Escherichia coli infection explains the synergistic effect of sulfa drugs and their metal conjugates. With growing interest in metal-based sulfonamides and the Schiff base chemistry, it was decided to synthesize sulfonamide Schiff base metal complexes as antioxidant and antimicrobial agent. Results The Fe (III), Ru (III), Co (II), Ni (II), Cu (II), Pd (II), Zn (II), Cd (II), and Hg (II) metal complexes of 4-((thiophen-2-ylmethylene)-amino)-benzenesulfonamide (TMABS) were prepared and studied for thermal stability, geometry, and other electronic properties. The ligand TMABS (Schiff base) and its metal complexes were screened in-vitro for 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and antimicrobial properties against Gram-positive (+ve) Bacillus subtilis (MTCC-441), Staphylococcus aureus (MTCC 7443), Gram-negative (-ve) Escherichia coli (MTCC 40), Salmonella typhi (MTCC 3231), and fungal strains Aspergillus niger (MTCC-1344) and Penicillium rubrum by agar well diffusion method. Results summarized in Tables 3, 4, and 5 represent the inhibitory concentration (IC50) in micromole (μM). The zone of inhibition (ZI) in millimeter (mm) represents antimicrobial properties of TMABS and its metal complexes. Conclusions The synthesized sulfanilamide Schiff base (TMABS) behaved as a neutral and bidentate ligand coordinating with metal ions through its azomethine nitrogen and thiophene sulfur to give complexes with coordination number of 4 and 6 (Fig. 3). The nucleophilic addition of sulfanilamide amino group (–NH2) group to carbonyl carbon (>C=O) of benzaldehyde gave sulfanilamide Schiff base (imine) (Fig. 2). All the metal complexes were colored and stable at room temperature. With IC50 of 9.5 ± 0.1 and 10.0 ± 0.7 μM, the Co, Cu, and Pd complexes appeared better antioxidant than the ligand TMABS (155.3±0.1 μM). The zone of inhibition (ZI) of Hg (28 mm) and Ru complexes (20 mm) were similar to the ligand TMABS (20 mm) against Aspergillus niger (MTCC-1344) as in Figs. 4, 5, and 6. None of the synthesized derivatives had shown better antimicrobial properties than the standard streptomycin sulfate and fluconazole.


2021 ◽  
Author(s):  
CF Almeida ◽  
D Smith ◽  
T-Y Cheng ◽  
C Harpur ◽  
E Batleska ◽  
...  

AbstractNatural Killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αβ T cell receptors (TCR) and recognise α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells) but our knowledge of the antigens for type II NKT cells is limited. An early study identified an NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa-drugs, but its mechanism of NKT-cell activation remained unknown. Here we demonstrate that a range of pentamethylbenzofuransulfonate (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d-tetramers identified type II NKT cell populations cells expressing αβ and γδTCRs, including those with variable and joining region gene usage (TRAV12-1–TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass spectrometric analysis, we detected molecules that allow binding of CD1d to TCRs, finding that both PBF and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that non-lipidic small molecules, that resemble sulfa-drugs implicated in systemic hypersensitivity and drug allergy reactions, activate a polyclonal population of type II NKT cells in a CD1d-restricted manner.Significance StatementWhereas T cells are known to recognize peptide, vitamin B metabolite or lipid antigens, we identify several non-lipidic small molecules, pentamethylbenzofuransulfonates (PBFs), that activate a population of CD1d-restricted NKT cells. This represents a breakthrough in the field of NKT cell biology. This study also reveals a previously unknown population of PBF-reactive NKT cells in healthy individuals with stereotyped receptors that paves the way for future studies of the role of these cells in immunity, including sulfa-drug hypersensitivity.


2021 ◽  
pp. 130226
Author(s):  
Syed Azhar Ali Shah Tirmazi ◽  
Muhammad Abdul Qadir ◽  
Mahmood Ahmed ◽  
Muhammad Imran ◽  
Riaz Hussain ◽  
...  

2021 ◽  
Vol 75 (1) ◽  
pp. 80-88
Author(s):  
Roger Deuber ◽  
Urs Leisinger ◽  
Amadeus Bärtsch

The topic 'Sulfa-Drugs in secondary school chemistry' has been developed in cooperation of three high schools (Kantonsschulen). Three essential aspects are covered that ideally complement each other: 1. The synthesis of sulfamethoxazole – an antibiotic 'without side effects' – as a practical course in a school laboratory; 2. An introduction to the topic 'drug design' with the question of structure, effect and side effects of sulfonamides; 3. A detailed answer to the question of how side effects can be avoided by the design of drugs using molecular modelling. Teaching materials on all topics can be downloaded free of charge from Swisseduc. ch (see box). The article discusses various possible approaches in high school chemistry along the lines of a well-established teaching unit on sulfonamides.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Thomas Uhlemann ◽  
Giel Berden ◽  
Jos Oomens

AbstractSulfa drugs are an important class of pharmaceuticals in the treatment of bacterial infections. The amido/imido tautomerism of these molecules in their neutral form has been widely discussed in the literature. Here, we study the protonation preferences of sulfa drugs upon electrospray ionization (ESI) using IR action spectroscopy of the ionized gas-phase molecules in a mass spectrometer. Our set of molecules includes sulfanilamide (SA), the progenitor of the family of sulfa drugs, and the actual, sulfonamide nitrogen substituted, sulfa drugs sulfamethoxazole (SMX), sulfisoxazole (SIX), sulfamethizole (SMZ), sulfathiazole (STZ), sulfapyridine (SP) and sulfaguanidine (SG). IR multiple photon dissociation (IRMPD) spectra were recorded for the protonated sulfa drugs using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) and an optical parametric oscillator/amplifier (OPO/OPA) as well as the FELIX free electron laser (FEL) as IR sources. The OPO provides tunable IR radiation in the NH stretch region (3100–3700 cm$$^{-1}$$ - 1 ), while the FEL covers the fingerprint region (520–1750 cm$$^{-1}$$ - 1 ). Comparison of experimental IR spectra with spectra predicted using density functional theory allowed us to determine the gas-phase protonation site. For SA, the sulfonamide NH$$_2$$ 2 group was identified as the protonation site, which contrasts the situation in solution, where the anilinic NH$$_2$$ 2 group is protonated. For the derivative sulfa drugs, the favored protonation site is the nitrogen atom included in the heterocycle, except for SG, where protonation occurs at the sulfonamide nitrogen atom. The theoretical investigations show that the identified protonation isomers correspond to the lowest-energy gas-phase structures.


Sign in / Sign up

Export Citation Format

Share Document