scholarly journals In situ vibrational studies of intermediates on PtZn-MCWNT electrocatalyst as anode electrode in DMFCs

Author(s):  
Ordikhani Seyedlar Ramin ◽  
Scott Shaw ◽  
Wenyu Huang
Crystals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Alka Garg ◽  
Daniel Errandonea ◽  
Julio Pellicer-Porres ◽  
Domingo Martinez-Garcia ◽  
Swayam Kesari ◽  
...  

The high-pressure behaviour of LiCrO2, a compound isostructural to the battery compound LiCoO2, has been investigated by synchrotron-based angle-dispersive X-ray powder diffraction, Raman spectroscopy, and resistance measurements up to 41, 30, and 10 Gpa, respectively. The stability of the layered structured compound on a triangular lattice with R-3m space group is confirmed in all three measurements up to the highest pressure reached. The dependence of lattice parameters and unit-cell volume with pressure has been determined from the structural refinements of X-ray diffraction patterns that are used to extract the axial compressibilities and bulk modulus by means of Birch–Murnaghan equation-of-state fits. The pressure coefficients for the two Raman-active modes, A1g and Eg, and their mode-Grüneisen parameters are reported. The electrical resistance measurements indicate that pressure has little influence in the resistivity up to 10 GPa. The obtained results for the vibrational and structural properties of LiCrO2 under pressure are in line with the published results of the similar studies on the related compounds. Research work reported in this article contributes significantly to enhance the understanding on the structural and mechanical properties of LiCrO2 and related lithium compounds.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document