An Analysis Of Secondary Circulations And Their Effects Caused By Small-Scale Surface Inhomogeneities Using Large-Eddy Simulation

2001 ◽  
Vol 101 (1) ◽  
pp. 31-59 ◽  
Author(s):  
S. Raasch ◽  
G. Harbusch
2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


2019 ◽  
Vol 885 ◽  
Author(s):  
A. E. Tejada-Martínez ◽  
A. Hafsi ◽  
C. Akan ◽  
M. Juha ◽  
F. Veron


2015 ◽  
Vol 40 (7) ◽  
pp. 3098-3109 ◽  
Author(s):  
M.A. Abdel-Raheem ◽  
S.S. Ibrahim ◽  
W. Malalasekera ◽  
A.R. Masri

2011 ◽  
Vol 679 ◽  
pp. 288-314 ◽  
Author(s):  
W. ANDERSON ◽  
C. MENEVEAU

Many flows especially in geophysics involve turbulent boundary layers forming over rough surfaces with multiscale height distribution. Such surfaces pose special challenges for large-eddy simulation (LES) when the filter scale is such that only part of the roughness elements of the surface can be resolved. Here we consider LES of flows over rough surfaces with power-law height spectra Eh(k) ~ kβs (−3 ≤ βs < −1), as often encountered in natural terrains. The surface is decomposed into resolved and subgrid-scale height contributions. The effects of the unresolved small-scale height fluctuations are modelled using a local equilibrium wall model (log-law or Monin–Obukhov similarity), but the required hydrodynamic roughness length must be specified. It is expressed as the product of the subgrid-scale root-mean-square of the height distribution and an unknown dimensionless quantity, α, the roughness parameter. Instead of specifying this parameter in an ad hoc empirical fashion, a dynamic methodology is proposed based on test-filtering the surface forces and requiring that the total drag force be independent of filter scale or resolution. This dynamic surface roughness (DSR) model is inspired by the Germano identity traditionally used to determine model parameters for closing subgrid-scale stresses in the bulk of a turbulent flow. A series of LES of fully developed flow over rough surfaces are performed, with surfaces built using random-phase Fourier modes with prescribed power-law spectra. Results show that the DSR model yields well-defined, rapidly converging, values of α. Effects of spatial resolution and spectral slopes are investigated. The accuracy of the DSR model is tested by showing that predicted mean velocity profiles are approximately independent of resolution for the dynamically computed values of α, whereas resolution-dependent results are obtained when using other, incorrect, α values. Also, strong dependence of α on βs is found, where α ranges from α ~ 0.1 for βs = −1.2 to α ~ 10−5 for βs = −3.


2009 ◽  
Vol 643 ◽  
pp. 279-308 ◽  
Author(s):  
D. CHUNG ◽  
D. I. PULLIN

We report direct numerical simulation (DNS) and large-eddy simulation (LES) of statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use an adaptation of the fringe-region technique, which continually supplies the flow with unmixed fluids at two opposite faces of a triply periodic domain in the presence of gravity, effectively maintaining an unstably stratified, but statistically stationary flow. We also develop a new method to solve the governing equations, based on the Helmholtz–Hodge decomposition, that guarantees discrete mass conservation regardless of iteration errors. Whilst some statistics were found to be sensitive to the computational box size, we show, from inner-scaled planar spectra, that the small scales exhibit similarity independent of Reynolds number, density ratio and aspect ratio. We also perform LES of the present flow using the stretched-vortex subgrid-scale (SGS) model. The utility of an SGS scalar flux closure for passive scalars is demonstrated in the present active-scalar, stably stratified flow setting. The multi-scale character of the stretched-vortex SGS model is shown to enable extension of some second-order statistics to subgrid scales. Comparisons with DNS velocity spectra and velocity-density cospectra show that both the resolved-scale and SGS-extended components of the LES spectra accurately capture important features of the DNS spectra, including small-scale anisotropy and the shape of the viscous roll-off.


2001 ◽  
Vol 436 ◽  
pp. 353-391 ◽  
Author(s):  
J. C. R. HUNT ◽  
N. D. SANDHAM ◽  
J. C. VASSILICOS ◽  
B. E. LAUNDER ◽  
P. A. MONKEWITZ ◽  
...  

Recent research is making progress in framing more precisely the basic dynamical and statistical questions about turbulence and in answering them. It is helping both to define the likely limits to current methods for modelling industrial and environmental turbulent flows, and to suggest new approaches to overcome these limitations. Our selective review is based on the themes and new results that emerged from more than 300 presentations during the Programme held in 1999 at the Isaac Newton Institute, Cambridge, UK, and on research reported elsewhere. A general conclusion is that, although turbulence is not a universal state of nature, there are certain statistical measures and kinematic features of the small-scale flow field that occur in most turbulent flows, while the large-scale eddy motions have qualitative similarities within particular types of turbulence defined by the mean flow, initial or boundary conditions, and in some cases, the range of Reynolds numbers involved. The forced transition to turbulence of laminar flows caused by strong external disturbances was shown to be highly dependent on their amplitude, location, and the type of flow. Global and elliptical instabilities explain much of the three-dimensional and sudden nature of the transition phenomena. A review of experimental results shows how the structure of turbulence, especially in shear flows, continues to change as the Reynolds number of the turbulence increases well above about 104 in ways that current numerical simulations cannot reproduce. Studies of the dynamics of small eddy structures and their mutual interactions indicate that there is a set of characteristic mechanisms in which vortices develop (vortex stretching, roll-up of instability sheets, formation of vortex tubes) and another set in which they break up (through instabilities and self- destructive interactions). Numerical simulations and theoretical arguments suggest that these often occur sequentially in randomly occurring cycles. The factors that determine the overall spectrum of turbulence were reviewed. For a narrow distribution of eddy scales, the form of the spectrum can be defined by characteristic forms of individual eddies. However, if the distribution covers a wide range of scales (as in elongated eddies in the ‘wall’ layer of turbulent boundary layers), they collectively determine the spectra (as assumed in classical theory). Mathematical analyses of the Navier–Stokes and Euler equations applied to eddy structures lead to certain limits being defined regarding the tendencies of the vorticity field to become infinitely large locally. Approximate solutions for eigen modes and Fourier components reveal striking features of the temporal, near-wall structure such as bursting, and of the very elongated, spatial spectra of sheared inhomogeneous turbulence; but other kinds of eddy concepts are needed in less structured parts of the turbulence. Renormalized perturbation methods can now calculate consistently, and in good agreement with experiment, the evolution of second- and third-order spectra of homogeneous and isotropic turbulence. The fact that these calculations do not explicitly include high-order moments and extreme events, suggests that they may play a minor role in the basic dynamics. New methods of approximate numerical simulations of the larger scales of turbulence or ‘very large eddy simulation’ (VLES) based on using statistical models for the smaller scales (as is common in meteorological modelling) enable some turbulent flows with a non-local and non-equilibrium structure, such as impinging or convective flows, to be calculated more efficiently than by using large eddy simulation (LES), and more accurately than by using ‘engineering’ models for statistics at a single point. Generally it is shown that where the turbulence in a fluid volume is changing rapidly and is very inhomogeneous there are flows where even the most complex ‘engineering’ Reynolds stress transport models are only satisfactory with some special adaptation; this may entail the use of transport equations for the third moments or non-universal modelling methods designed explicitly for particular types of flow. LES methods may also need flow-specific corrections for accurate modelling of different types of very high Reynolds number turbulent flow including those near rigid surfaces.This paper is dedicated to the memory of George Batchelor who was the inspiration of so much research in turbulence and who died on 30th March 2000. These results were presented at the last fluid mechanics seminar in DAMTP Cambridge that he attended in November 1999.


Sign in / Sign up

Export Citation Format

Share Document