scholarly journals Reversal of Sodium Arsenite Inhibition of Rat Liver Microsomal Ca2+ Pumping ATPase by Vitamin C

1999 ◽  
Vol 19 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Odutayo O. Odunuga ◽  
Gbolahan W. Okunade ◽  
Olufunso O. Olorunsogo

Sodium arsenite (NaAsO2), at 10% of its median lethal dose, was administered to rats with and without vitamin C pretreatment. Liver microsomal fraction was isolated and the activity of Ca2+-ATPase was assayed. Sodium arsenite was found to inhibit the activity of the liver microsomal Ca2+-ATPase to 50% to that of control rats. The specific activity of the enzyme in rats administered sodium arsenite with vitamin C pretreatment was not significantly different from that of control rats.

1987 ◽  
Vol 21 (1) ◽  
pp. 5-8
Author(s):  
T. I. Davidenko ◽  
O. V. Sevast'yanov ◽  
L. N. Yakubovskaya

1971 ◽  
Vol 124 (4) ◽  
pp. 767-777 ◽  
Author(s):  
F. De Matteis

1. The effect of a single dose of 2-allyl-2-isopropylacetamide on the cytochrome P-450 concentration in rat liver microsomal fraction was studied. The drug caused a rapid loss of cytochrome P-450 followed by a gradual increase to above the normal concentration. 2. The loss of cytochrome P-450 was accompanied by a loss of microsomal haem and by a brown–green discoloration of the microsomal fraction suggesting that a change in the chemical constitution of the lost haem had taken place. Direct evidence for this was obtained by prelabelling the liver haems with radioactive 5-aminolaevulate: the drug caused a loss of radioactivity from the haem with an increase of radioactivity in a fraction containing certain un-identified green pigments. 3. Evidence was obtained by a dual-isotopic procedure that rapidly turning-over haem(s) may be preferentially affected. 4. The loss of cytochrome P-450 as well as the loss of microsomal haem and the discoloration of the microsomal fraction were more intense in animals pretreated with phenobarbitone and were much less evident when compound SKF 525-A (2-diethylaminoethyl 3,3-diphenylpropylacetate) was given before 2-allyl-2-isopropylacetamide, suggesting that the activity of the drug-metabolizing enzymes may be involved in these effects. 5. The relevance of the destruction of liver haem to the increased activity of 5-aminolaevulate synthetase caused by 2-allyl-2-isopropylacetamide is discussed.


1979 ◽  
Vol 183 (1) ◽  
pp. 167-169 ◽  
Author(s):  
T J Visser ◽  
E Van Overmeeren

Previous studies have shown that 2-thiouracil derivatives are uncompetitive inhibitors of iodothyronine 5′-deiodinase activity of rat liver microsomal fraction. Therefore the interaction of radioiodinated 6-propyl-2-thiouracil with rat liver microsomal fraction and the effect of substrate, cofactor and other inhibitors of 5′-deiodinase activity activity were investigated. It was found that micromolar concentrations of, in order of increasing potency, 3,5-diiodotyrosine, thyroxine, 3,3′,5′-tri-iodothyronine and 3′,5′-di-iodothyronine significantly enhanced binding of 5-[125I]iodo-6-propyl-2-thiouracil to the enzyme preparation. This stimulation was not seen in the presence of 1 mM dithiothreitol, 0.1 mM-6-propyl-2-thiouracil, 0.1 mM-6-propyl-2-thiouracil, 0.1 M-2-mercapto-1-methylimidazole or 1 mM-sodium sulphite. These results support the hypothesis that thiouracil derivatives inhibit 5′-deiodinase activity by forming a mixed disulphide with an intermediate enzyme complex, probably a sulphenyl iodide.


1970 ◽  
Vol 117 (2) ◽  
pp. 319-324 ◽  
Author(s):  
G. J. Mulder

1. The detergent Triton X-100 activates UDP glucuronyltransferase from rat liver in vitro six- to seven-fold with p-nitrophenol as substrate. The enzyme activity when measured in the presence of Triton X-100 is increased significantly by pretreatment of male rats with phenobarbital for 4 days (90mg/kg each day intraperitoneally). If no Triton X-100 is applied in vitro such an increase could not be shown. In all further experiments the enzyme activity was measured after activation by Triton X-100. 2. The Km of the enzyme for the substrate p-nitrophenol does not change on phenobarbital pretreatment. 3. When the microsomal fraction from the liver of untreated rats is subfractionated on a sucrose density gradient, 47% of the enzyme activity is recovered in the rough-surfaced microsomal fraction, which also has a higher specific activity than the smooth-surfaced fraction. 4. Of the increase in activity after the phenobarbital pretreatment 50% occurs in the smooth-surfaced fraction, 19% in the rough-surfaced fraction and 31% in the fraction located between the smooth- and rough-surfaced microsomal fractions on the sucrose density gradient. 5. The latency of the enzyme in vitro, as shown by the effect of the detergent Triton X-100, is discussed in relation to the proposed heterogeneity of UDP glucuronyltransferase.


2011 ◽  
Vol 36 (3) ◽  
pp. 159-166 ◽  
Author(s):  
Leandro Augusto Calixto ◽  
Anderson Rodrigo Moraes de Oliveira ◽  
Valquíria Aparecida Polisel Jabor ◽  
Pierina Sueli Bonato

Sign in / Sign up

Export Citation Format

Share Document