Baire's Category Theoretic Classification of Compact Expansive Dynamical Systems

2002 ◽  
Vol 09 (04) ◽  
pp. 315-323 ◽  
Author(s):  
Kazutaka Sakai

A revised version of the estimation inequality of Akashi [2] is given, and this result is applied to Baire's category theoretic classification of ∊-expansive dynamical systems. Moreover, this classification method is applied to topological classification of shift dynamical systems on finite-dimensional compact domains.

2003 ◽  
Vol 46 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Andrew J. Dean

AbstractAn AF flow is a one-parameter automorphism group of an AF C*-algebra A such that there exists an increasing sequence of invariant finite dimensional sub-C*-algebras whose union is dense in A. In this paper, a classification of C*-dynamical systems of this form up to equivariant isomorphism is presented. Two pictures of the actions are given, one in terms of a modified Bratteli diagram/pathspace construction, and one in terms of a modified K0 functor.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Leilei Jia ◽  
Qihuai Liu ◽  
Shengqiang Tang

By using the bifurcation theory of dynamical systems, we present the exact representation and topological classification of coherent matter waves in Bose-Einstein condensates (BECs), such as solitary waves and modulate amplitude waves (MAWs). The existence and multiplicity of such waves are determined by the parameter regions selected. The results show that the characteristic of coherent matter waves can be determined by the “angular momentum” in attractive BECs while for repulsive BECs; the waves of the coherent form are all MAWs. All exact explicit parametric representations of the above waves are exhibited and numerical simulations support the result.


Author(s):  
Semen A. Simbirtsev ◽  
Evgeniy M. Trunin ◽  
Aleksandr A. Smirnov ◽  
Rustem E. Topuzov ◽  
Azat I. Nazmiev ◽  
...  

The authors propose a new type of classification of various anatomical variants of venous return from the right half of the colon based on the application of the principles of topology and combinatorics. The article presents data obtained from the topographic and anatomical study of the venous return from the right hemicolon collected from anatomical material (25 observations), and describes the coding algorithm in each case, allocating it to a particular class according to the proposed classification. A block diagram of a software package for semi-automatic retopology of venous return from the right half of the colon is also proposed.


2011 ◽  
Vol 22 (01) ◽  
pp. 1-23 ◽  
Author(s):  
KAREN R. STRUNG ◽  
WILHELM WINTER

Let X be an infinite compact metric space, α : X → X a minimal homeomorphism, u the unitary that implements α in the transformation group C*-algebra C(X) ⋊α ℤ, and [Formula: see text] a class of separable nuclear C*-algebras that contains all unital hereditary C*-subalgebras of C*-algebras in [Formula: see text]. Motivated by the success of tracial approximation by finite dimensional C*-algebras as an abstract characterization of classifiable C*-algebras and the idea that classification results for C*-algebras tensored with UHF algebras can be used to derive classification results up to tensoring with the Jiang-Su algebra [Formula: see text], we prove that (C(X) ⋊α ℤ) ⊗ Mq∞ is tracially approximately [Formula: see text] if there exists a y ∈ X such that the C*-subalgebra (C*(C(X), uC0(X\{y}))) ⊗ Mq∞ is tracially approximately [Formula: see text]. If the class [Formula: see text] consists of finite dimensional C*-algebras, this can be used to deduce classification up to tensoring with [Formula: see text] for C*-algebras associated to minimal dynamical systems where projections separate tracial states. This is done without making any assumptions on the real rank or stable rank of either C(X) ⋊α ℤ or C*(C(X), uC0(X\{y})), nor on the dimension of X. The result is a key step in the classification of C*-algebras associated to uniquely ergodic minimal dynamical systems by their ordered K-groups. It also sets the stage to provide further classification results for those C*-algebras of minimal dynamical systems where projections do not necessarily separate traces.


1996 ◽  
Vol 48 (5) ◽  
pp. 946-958 ◽  
Author(s):  
George A. Elliott ◽  
Hongbing Su

AbstractIn this paper a K-theoretic classification is given of the C*-dynamical systems where An is finite-dimensional. Corresponding to the trivial action is the K-theoretic classification for AF algebras obtained in [3] (also see [1]).


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


Sign in / Sign up

Export Citation Format

Share Document