Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry

Hydrobiologia ◽  
2003 ◽  
Vol 505 (1-3) ◽  
pp. 119-128 ◽  
Author(s):  
Sidinei Magela Thomaz ◽  
Débora C. Souza ◽  
Luis Mauricio Bini
2014 ◽  
Vol 26 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Suelen Cristina Alves da Silva ◽  
Armando Carlos Cervi ◽  
Cleusa Bona ◽  
André Andrian Padial

AIM: Investigate spatial and temporal variation in the aquatic macrophyte community in four urban reservoirs located in Curitiba metropolitan region, Brazil. We tested the hypothesis that aquatic macrophyte community differ among reservoirs with different degrees of eutrophication. METHODS: The reservoirs selected ranged from oligotrophic/mesotrophic to eutrophic. Sampling occurred in October 2011, January 2012 and June 2012. Twelve aquatic macrophytes stands were sampled at each reservoir. Species were identified and the relative abundance of aquatic macrophytes was estimated. Differences among reservoirs and over sampling periods were analyzed: i) through two‑way ANOVAs considering the stand extent (m) and the stand biodiversity - species richness, evenness, Shannon-Wiener index and beta diversity (species variation along the aquatic macrophyte stand); and ii) through PERMANOVA considering species composition. Indicator species that were characteristic for each reservoir were also identified. RESULTS: The aquatic macrophyte stand extent varied among reservoirs and over sampling periods. Species richness showed only temporal variation. On the other hand, evenness and Shannon-Wiener index varied only among reservoirs. The beta diversity of macrophyte stands did not vary among reservoirs or over time, meaning that species variability among aquatic macrophyte stands was independent of the stand extent and reservoir eutrophication. Community composition depended on the reservoir and sampling period. CONCLUSIONS: Our results support our initial expectation that reservoirs of different degrees of eutrophication have different aquatic macrophyte communities. As a consequence, each reservoir had particular indicator species. Therefore, monitoring and management efforts must be offered for each reservoir individually.


2019 ◽  
Vol 36 ◽  
pp. 1-5
Author(s):  
Moacyr Serafim-Júnior ◽  
Gilmar Perbiche-Neves ◽  
Fabio Lansac-Toha

Zooplankton exhibit several trends of variation in space and time, and these trends can be more evident in natural environments without anthropic perturbations. Examples of anthropic factors are climate change, eutrophication and construction of reservoirs. This study evaluated the influence of three factors – seasonality, type of environment and the presence of aquatic macrophytes – on various ecological attributes of rotifers in a river-lake system located in the Paraná River floodplain. Monthly samplings were conducted during 1993 and 1994. The mean species richness per sample was 60 species. The seasonality and the type of environment influenced the ecological attributes of rotifer assemblages, while the presence or absence of aquatic macrophytes did not. Species richness was highest in the lake system and during the months when water levels were low. Multivariate analysis indicates a small group of species associated with the low water-level phase. In contrast, many species were associated with high water levels or increasing water levels. The seasonal variation of hydrological cycle and the type of environment are the most important factors for rotifer structure in natural conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Veronika Fontana ◽  
Elia Guariento ◽  
Andreas Hilpold ◽  
Georg Niedrist ◽  
Michael Steinwandter ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
王金旺 WANG Jinwang ◽  
魏馨 WEI Xin ◽  
陈秋夏 CHEN Qiuxia ◽  
李效文 LI Xiaowen ◽  
杨升 YANG Sheng

Ecography ◽  
2014 ◽  
Vol 38 (3) ◽  
pp. 261-272 ◽  
Author(s):  
Celia López-González ◽  
Steven J. Presley ◽  
Abraham Lozano ◽  
Richard D. Stevens ◽  
Christopher L. Higgins

2020 ◽  
Author(s):  
Ke Cao ◽  
Richard Condit ◽  
Xiangcheng Mi ◽  
Lei Chen ◽  
Haibao Ren ◽  
...  

AbstractThe latitudinal gradient of declining species richness at higher latitudes is among the most fundamental patterns in ecology. However, whether changes in species composition across space (beta-diversity) contribute to this global gradient of species richness remains debated. Previous studies that failed to resolve the issue suffered from a well-known tendency for small samples in high gamma-diversity areas to inflate measures of beta-diversity. We provide here a rigorous test, comparing species-packing and local heterogeneity across a latitudinal gradient in tree species richness in Asia, using beta-diversity metrics that correct the gamma-diversity and sampling bias. Our data include 21 large forest plots across a wide environmental gradient in East Asia. We demonstrate that local beta-diversity increases with topographic heterogeneity, but after accounting for this and correcting the gamma-diversity bias, tropical forests still have higher beta-diversity than temperate, contributing to the latitudinal gradient of species richness. This supports the hypothesis of tighter species packing and larger niche space in tropical forests while demonstrating the importance of local processes in controlling beta-diversity.


2020 ◽  
Vol 153 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Jaquelina A. Nunes ◽  
Pedro M. Villa ◽  
Andreza V. Neri ◽  
Wesley A. Silva ◽  
Carlos E.G.R. Schaefer

Background and aims – Seasonality exerts strong controlling forces on species diversity in herbaceous species communities, however, this control process remains poorly understood in tropical lithologically different rocky outcrops. We aim to investigate the effect of seasonality and the variability of soil properties on changes in the herbaceous species richness and species composition of two different herbaceous species communities on rocky outcrops in Brazil. We hypothesize that seasonality, determined by variation in precipitation, and soil fertility, determined by variability in nutrient-related soil properties, drives species diversity (i.e., richness and beta diversity) patterns of herbaceous communities at local scale.Methods – To investigate how the variation between dry and wet seasons affects species richness and beta diversity, we studied plots on rocky outcrops of Iron Quadrangle (40 plots, 1 × 1 m) and Carajás (20 plots, 1 × 1 m). Key results – We observed similar richness patterns between seasons, without significant differences between sites, using rarefaction and extrapolation curves. However, we observed significant differences in beta diversity between seasons. Our results indicate that seasonality determines the temporal variation of the herbaceous species composition, but not species richness. Likewise, our tested models indicated that seasonality shape beta diversity in the studied rocky outcrops. Conclusions – The predictable seasonal precipitation is closely related to the community composition on this type of rocky outcrop formation, where there typically is a marked seasonal water deficit pattern, with increased deficit during the dry season. We presume that seasonality is an important driver in determining plant community assembly at local scale on the studied rocky outcrops.


2021 ◽  
Author(s):  
José Hidasi-Neto ◽  
Nicole Mércia Alves Gomes ◽  
Nelson Silva Pinto

Climate Change is already seen as one of the biggest threats to biodiversity in the 21 st century. Not much studies direct attention to its effects on whole communities of threatened hotspots. In the present work, we combine ecological niche modelling (ENM) with a future climate scenario of greenhouse gases emissions to study the future changes in alpha and beta diversity of birds of the Brazilian Cerrado biome, a hotspot of biodiversity with high velocity of climate change and agricultural expansion. In general, we found heterogeneous results for changes in species richness, spatial and temporal taxonomic and functional beta diversity, and mean ecological distinctiveness. Contrary to a previous study on Cerrado mammals, species richness is expected to increase in Northern Cerrado, where homogenization of communities (decreasing spatial turnover) is also expected to occur especially through local invasions. We show that biotic homogenization (which is composed of local extinction of natives and local invasion of exotic species) will occur in two biological groups but through different subprocesses: local extinctions for mammals and local invasions for birds. Distinct conservation management actions should be directed depending on the outcomes of analyzes of alpha and spatial and temporal beta diversity, for example controlling species invasions in Northern Cerrado. Conservation studies should continue evaluating Cerrado in Brazil even under covid pandemic, as environmental situation in the country is not good and incentives for scientific studies are almost nonexistent.


2020 ◽  
Vol 11 ◽  
Author(s):  
Robin-Tobias Jauss ◽  
Susanne Walden ◽  
Anna Maria Fiore-Donno ◽  
Kenneth Dumack ◽  
Stefan Schaffer ◽  
...  

Tree canopies provide habitats for diverse and until now, still poorly characterized communities of microbial eukaryotes. One of the most general patterns in community ecology is the increase in species richness with increasing habitat diversity. Thus, environmental heterogeneity of tree canopies should be an important factor governing community structure and diversity in this subsystem of forest ecosystems. Nevertheless, it is unknown if similar patterns are reflected at the microbial scale within unicellular eukaryotes (protists). In this study, high-throughput sequencing of two prominent protistan taxa, Cercozoa (Rhizaria) and Oomycota (Stramenopiles), was performed. Group specific primers were used to comprehensively analyze their diversity in various microhabitats of a floodplain forest from the forest floor to the canopy region. Beta diversity indicated highly dissimilar protistan communities in the investigated microhabitats. However, the majority of operational taxonomic units (OTUs) was present in all samples, and therefore differences in beta diversity were mainly related to species performance (i.e., relative abundance). Accordingly, habitat diversity strongly favored distinct protistan taxa in terms of abundance, but due to their almost ubiquitous distribution the effect of species richness on community composition was negligible.


Sign in / Sign up

Export Citation Format

Share Document