climate scenario
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 159)

H-INDEX

32
(FIVE YEARS 5)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 49
Author(s):  
Chul-Hee Lim ◽  
Hyun-Jun Kim

Recent cases of climate disasters such as the European floods in 2021 and Korea’s longest rainy season in 2020 strongly imply the importance of adaptation to climate change. In this study, we performed a numerical prediction on how much climate change adaptation factors related to forest policy can reduce climate disasters such as landslides. We focused on the landslide in Korea and applied a machine learning model reflecting adaptive indicators in the representative concentration pathway 8.5 climate scenario. The changes in the landslide probability were estimated using the Random Forest model, which estimated the landslide probability in the baseline period (2011) with excellent performance, and the spatial adaptation indicators used in this study contributed approximately 20%. The future landslide risk predicting indicated a significant increase in the Very High and High risk areas, especially in 2092. The application of the forest-related adaptation indices based on the policy scenario showed that in 2050, the effect was not pronounced, but in 2092, when the risk of landslides was much higher, the effect increased significantly. In particular, the effect was remarkable in the Seoul metropolitan and southern coastal regions. Even with the same adaptive capacity, it exerted a larger effect on the enhanced disasters. Our results suggest that the enhancement of adaptive capacity can reduce landslide risk up to 70% in a Very High risk region. In conclusion, it implies an importance to respond to the intensifying climate disasters, and abundant follow-up studies are expected to appear in the future.


2022 ◽  
Vol 12 (01) ◽  
pp. 1-35
Author(s):  
Raquel A. M. São Miguel ◽  
Rita Anastácio ◽  
Mário J. Pereira

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Obinna A. Obiora-Okeke ◽  
James R. Adewumi ◽  
Ochuko M. Ojo

Increased rainfall amounts are projected in the humid southern parts of Nigeria due to climate change. The consequence of higher rainfall in future years would result to higher peak runoffs and flood stages in streams in these parts. The focus of this study is to simulate peak runoff at the outlet of Ogbese river watershed for future years of 2030, 2040, 2050 and 2060. Local twenty years (2000-2019) historical rainfall depths were used to statically downscale General Circulation Model outputs in the future for RCP 4.5 climate scenario. Downscaled rainfall depths were inputted in HEC-HMS model version 4.2 for rainfall-runoff simulation. The watershed was delineated with DEM in ArcGIS while four land use and land cover classifications were extracted with QGIS. Maximum rainfall depths projected in years 2030, 2040, 2050 and 2060 were 38.5mm/hr, 39mm/hr, 42mm/hr and 46mm/hr respectively. Peak runoff discharge simulated for RCP 4.5 climate scenario in years 2030, 2040, 2050 and 2060 are 1771m3/s, 1826 m3/s, 1897 m3/s and 2200 m3/s respectively. This represents 24.2% increase peak discharge between 2030 and 2060. Land area delineated for the catchment is 1946.2 km2. The LULC classification areas for urban area, forest, rock outcrop and bare land are 81.59 km2, 1721.84 km2, 146.27 km2 and 4.11 km2 respectively. The soil types are sandy clay loam (92.51 %), sandy loam (6.84 %), and clay (0.65 %). Curve Number and Initial abstraction parameter values are 70.27 and 2.89 respectively. Keywords- Climate change, GCM, HEC-HMS , Ogbese river, Peak runoff 


Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 159-171
Author(s):  
Mateja JEMEC AUFLIČ ◽  
Gašper BOKAL ◽  
Špela KUMELJ ◽  
Anže MEDVED ◽  
Mojca DOLINAR ◽  
...  

Slovenia is affected by extreme and intense rainfall that triggers numerous landslides every year, resulting in significant human impact and damage to infrastructure. Previous studies on landslides have shown how rainfall patterns can influence landslide occurrence, while in this paper, we present one of the first study in Slovenia to examine the impact of climate change on landslides in the mid-21st century. To do this, we used the Representative Concentration Pathway (RCP) 4.5 climate scenario and future climatology simulated by six climate models that differed from each other as much as possible while representing measured values of past climate variables as closely as possible. Based on baseline period (1981-2010) we showed the number of days with exceedance of rainfall thresholds and the area where landslides may occur more frequently in the projection period (2041-2070). We found that extreme rainfall events are likely to occur more frequent in the future, which may lead to a higher frequency of landslides in some areas.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Goran Trbic ◽  
Tatjana Popov ◽  
Vladimir Djurdjevic ◽  
Igor Milunovic ◽  
Tihomir Dejanovic ◽  
...  

This paper presents the results of research on possible climate change in Bosnia and Herzegovina according to the climate scenario RCP8.5 and its potential impact on fruit production. Climate change analyses are based on expected fluctuations in air temperature, precipitation and climate indices. The results indicate pronounced climate change, which refers to an increase in annual temperature to 5 °C, and a decrease in annual precipitation of up to 30% and in the summer season (June, July, and August) and up to 40% by the end of the XXI century. In addition, an increase in the number of summer days and a decrease in the number of days with the appearance of snow can be expected. Reducing the number of days with snow and snow cover can cause a decrease in underground aquifers with water during the winter and spring seasons. These changes can have a serious impact on the problem of drought and water deficit, which can have direct consequences for the agricultural sector in Bosnia and Herzegovina, especially for fruit production. These findings show that fundamental changes in agriculture and an approach to land treatment and water resources management, as well as fruit production planning in changed climatic conditions, are needed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261626
Author(s):  
Antigoni Akrivou ◽  
Iro Georgopoulou ◽  
Dimitrios P. Papachristos ◽  
Panagiotis G. Milonas ◽  
Darren J. Kriticos

Citrus blackfly, Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae), is an important agricultural quarantine pest, causing substantial economic losses to citrus and many other cultivated crops. Aleurocanthus woglumi is found in tropical and subtropical regions but is presently unknown in Europe and the Mediterranean Basin. We used CLIMEX to model the potential distribution of A. woglumi under an historical climate scenario (centred on 1995), including a spatially explicit irrigation scenario. We found that A. woglumi could potentially invade the Mediterranean Basin, and south-east Asia, including Australia. There is potential for it to invade most of sub-Saharan Africa. Irrigation is revealed as an important habitat factor affecting the potential distribution of A. woglumi, increasing its potential range by 53% in Asia. Under a future climate scenario for 2050, its potential distribution increased across all continents except Africa, where potential range expansion due to relaxation of cold stresses was limited, and was offset by range decrease due to lethal heat or dry stress. As global climates warm, Europe is likely to face a substantial increase in the area at risk of establishment by A. woglumi (almost doubling under the 2050 irrigation scenario). The biosecurity threat from A. woglumi is significant in current citrus production areas and poses a challenge to biosecurity managers and risk analysts.


2021 ◽  
Author(s):  
Nils Riach ◽  
Nicolas Scholze ◽  
Rüdiger Glaser

Abstract. In this study we examine the spatial patterns of risk towards climate change and climatic extremes in the “Trinational Metropolitan Region Upper Rhine” (TMU). Following the concept of risk analysis, we identify the regional dimension of climatic stressors in relation to the socio-economic dimension. We present an indicator-based assessment, which operationalizes risk as a product of its subcomponents climatic stressors, spatial occurrence, sensitivity and impact.We map them individually and aggregate them into a composite index. We also address the specific challenges of the trinational situation, which has an impact on the availability, homogeneity and resolution of comparable data sets. We show that risk can be approximated and mapped despite the uncertainties and additionally we explore to what extent the subcomponents contribute to the overall index. The results show differentiated spatial patterns of risk with cross-border clusters i.e. transnational corridors. Risk is amplified depending on the driving climate scenario for 2021–2050, 2041–2070 and 2071–2100, and increases during the course of the century, especially in the transnational metropolitan corridors of the TMU. Further focus on transnational spatial planning and cooperation is needed in future adaption research and practice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Trang Minh Duong

The many thousands of small tidal inlets (STIs), and their adjacent coastlines, are almost certain to be affected by climate change in multiple ways, due to their behaviour being closely linked to both oceanic and terrestrial drivers such as riverflow, sea level, and ocean waves, all which are projected to change over the 21st century. Development of risk informed adaptation strategies for these highly utilized and inhabited inlet-interrupted coast zones requires projections of both alongshore average coastline recession and alongshore variability in coastline position along the coast under future forcing conditions, the latter being an aspect that has not received much attention to date. Here, a combination of a process-based morphodynamic model (Delft3D) and the reduced complexity coastline model (SMIC), concurrently forced with tides, waves, riverflows, and sea level rise, is used to investigate both of these phenomena at STI-interrupted coasts. The models are here applied to schematised conditions representing two systems in Sri Lanka, representing two of the three main Types of STIs: Negombo lagoon – permanently open, locationally stable inlet (Type 1), and Kalutara lagoon – permanently open, alongshore migrating inlet (Type 2). Results indicate that, under a high emissions climate scenario following RCP 8.5, by end-century, the coastline adjacent to the Type 1 STI may experience an alongshore average recession as large as 200 m, and that the alongshore variability in coastline position may be up to twice that at present. The Type 2 STI is projected to experience an alongshore average coastline recession of about 120 m, and up to a 75% increase in alongshore variability in coastline position by end-century, relative to the present. Thus, both the alongshore average coastline recession and the increase in the alongshore variability in coastline position are greater at the Type 1 STI, compared to at the Type 2 STI. These findings highlight the importance of accounting for both alongshore average coastline recession and future changes in alongshore variability in coastline position when assessing coastal hazards and risk on inlet-interrupted coasts to adequately inform climate adaptation strategies.


2021 ◽  
Vol 945 (1) ◽  
pp. 012023
Author(s):  
Ping Khang Choong ◽  
Kok Weng Tan ◽  
Kah Seng Chin

Abstract This paper presents the work of statistically downscaling the CAN ESM 2 (Canada Earth System Model 2) climate data into regional climate data to produce the future climate scenario using the RCP (Representative Concentration Pathways) 2.6,4.5 and 8.5 green-house gas concentration trajectory suggested by Intergovernmental Panel on Climate Change Fifth Assessment Reports (IPCC-AR5). Selected location for regional climate downscaling includes Batu Pahat (1° 52’ N 102° 59’ E) and Kulai (1° 38’ N 103° 40’ E), downscaled outcome of monthly rainfall (mm), daily maximum (Tmax) and daily minimum (Tmin) temperature (°C) was produced by using SDSM (Statistical Downscaling Model) software to calibrate the CANESM2 output with the historical data. Quantile-mapping bias correction by using exponential distribution function was done to obtain bias corrected rainfall data. Reliability test using Pearson correlation coefficient was done by comparing between actual historical data. Based on Pearson correlation applied on bias corrected results, for Batu Pahat, the most suitable RCP model for both Tmax and Tmin is RCP 2.6, with correlation of 0.74 and 0.72, most suitable model for rainfall is RCP 4.5 with correlation of 0.24. For Kulai, the most suitable RCP model for Tmin is RCP 8.5, with correlation of 0.63, for Tmax and rainfall the suitable model is RCP 2.6, with correlation of 0.73 and 0.36. In overall, the more appropriate model to describe the climate for both Batu Pahat and Kulai based on Pearson correlation from year 2006 to 2019 is RCP 2.6, as the RCP 2.6 model are having higher correlation to the historical data.


Water Policy ◽  
2021 ◽  
Author(s):  
Joe Manous ◽  
Eugene Z. Stakhiv

Abstract Climate risk-informed decision analysis (CRIDA) is a guidebook that lays out an evaluation framework and decision procedures to deal with climate uncertainties that are consistent with traditional agency water resources planning frameworks. CRIDA guidelines complement existing institutional guidance on recognizing circumstances when more complex risk-based climate analysis may be needed, above those required by standard planning procedures. The procedures are based on the concept of ‘decision-scaling’ judgments to qualitatively assess levels of future risk and analytical uncertainty stemming from climate change-related uncertainties, and as a guide for choosing specific analytical approaches and appropriate levels of analysis. CRIDA addresses how much detail is appropriate for a given problem setting, depending on infrastructure type and function, whether it is new design or rehabilitation of existing infrastructure, modular design or long-life infrastructure. CRIDA was structured to resolve the contentious issue of deciding under what circumstances a ‘top-down’ climate scenario-driven analysis ought to be conducted versus a more traditional ‘bottom-up’ vulnerability assessment, based on conventional agency project feasibility procedures. The procedures for such vulnerability assessments and planning procedures are well-represented in classical approaches, such as those included in the 1983 U.S. Water Resources Council's ‘Principles and Guidelines’. These commonly used procedures promote normative evaluation protocols and decision rules that generate alternative solutions which minimize risk-cost outcomes.


Sign in / Sign up

Export Citation Format

Share Document