temporal beta diversity
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
José Hidasi-Neto ◽  
Nicole Mércia Alves Gomes ◽  
Nelson Silva Pinto

Climate Change is already seen as one of the biggest threats to biodiversity in the 21 st century. Not much studies direct attention to its effects on whole communities of threatened hotspots. In the present work, we combine ecological niche modelling (ENM) with a future climate scenario of greenhouse gases emissions to study the future changes in alpha and beta diversity of birds of the Brazilian Cerrado biome, a hotspot of biodiversity with high velocity of climate change and agricultural expansion. In general, we found heterogeneous results for changes in species richness, spatial and temporal taxonomic and functional beta diversity, and mean ecological distinctiveness. Contrary to a previous study on Cerrado mammals, species richness is expected to increase in Northern Cerrado, where homogenization of communities (decreasing spatial turnover) is also expected to occur especially through local invasions. We show that biotic homogenization (which is composed of local extinction of natives and local invasion of exotic species) will occur in two biological groups but through different subprocesses: local extinctions for mammals and local invasions for birds. Distinct conservation management actions should be directed depending on the outcomes of analyzes of alpha and spatial and temporal beta diversity, for example controlling species invasions in Northern Cerrado. Conservation studies should continue evaluating Cerrado in Brazil even under covid pandemic, as environmental situation in the country is not good and incentives for scientific studies are almost nonexistent.


Oecologia ◽  
2021 ◽  
Author(s):  
Ryosuke Nakadai

AbstractBeta-diversity was originally defined spatially, i.e., as variation in community composition among sites in a region. However, the concept of beta-diversity has since been expanded to temporal contexts. This is referred to as “temporal beta-diversity”, and most approaches are simply an extension of spatial beta-diversity. The persistence and turnover of individuals over time is a unique feature of temporal beta-diversity. Nakadai (2020) introduced the “individual-based beta-diversity” concept, and provided novel indices to evaluate individual turnover and compositional shift by comparing individual turnover between two periods at a given site. However, the proposed individual-based indices are applicable only to pairwise dissimilarity, not to multiple-temporal (or more generally, multiple-unit) dissimilarity. Here, individual-based beta-diversity indices are extended to multiple-unit cases. In addition, a novel type of random permutation criterion related to these multiple-unit indices for detecting patterns of individual persistence is introduced in the present study. To demonstrate the usage the properties of these indices compared to average pairwise measures, I applied them to a dataset for a permanent 50-ha forest dynamics plot on Barro Colorado Island in Panama. Information regarding “individuals” is generally missing from community ecology and biodiversity studies of temporal dynamics. In this context, the methods proposed here are expected to be useful for addressing a wide range of research questions regarding temporal changes in biodiversity, especially studies using traditional individual-tracked forest monitoring data.


2021 ◽  
Author(s):  
Ryosuke Nakadai

AbstractBeta-diversity was originally defined spatially, i.e., as variation in community composition among sites in a region. However, the concept of beta-diversity has since been expanded to temporal contexts. This is referred to as “temporal beta-diversity”, and most approaches are simply an extension of spatial beta-diversity.The persistence and turnover of individuals over time is a unique feature of temporal beta-diversity. Nakadai (2020) introduced the “individual-based beta-diversity” concept, and provided novel indices to evaluate individual turnover and compositional shift by comparing individual turnover between two periods at a given site. However, the proposed individual-based indices are applicable only to pairwise dissimilarity, not to multiple-temporal (or more generally, multiple-unit) dissimilarity.Here, individual-based beta-diversity indices are extended to multiple-unit cases.To demonstrate the usage the properties of these indices compared to average pairwise measures, I applied them to a dataset for a permanent 50-ha forest dynamics plot on Barro Colorado Island in Panama.Information regarding “individuals” is generally missing from community ecology and biodiversity studies of temporal dynamics. In this context, the method proposed here is expected to be useful for addressing a wide range of research questions regarding temporal changes in biodiversity, especially studies using individual-tracked forest monitoring data.


2020 ◽  
Vol 8 ◽  
Author(s):  
Cássio Alencar Nunes ◽  
Flávio S. Castro ◽  
Humberto S. C. Brant ◽  
Scott Powell ◽  
Ricardo Solar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document