A Sensitivity Analysis of Frequency Selective Surfaces at Millimeter Wave Band

Author(s):  
Antonio Luiz P.S. Campos ◽  
Adaildo Gomes d'Assunção
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 552
Author(s):  
Juan Andrés Vásquez-Peralvo ◽  
Adrián Tamayo-Domínguez ◽  
Gerardo Pérez-Palomino ◽  
José Manuel Fernández-González ◽  
Thomas Wong

The use of additive manufacturing and different metallization techniques for prototyping radio frequency components such as antennas and waveguides are rising owing to their high precision and low costs. Over time, additive manufacturing has improved so that its utilization is accepted in satellite payloads and military applications. However, there is no record of the frequency response in the millimeter-wave band for inductive 3D frequency selective structures implemented by different metallization techniques. For this reason, three different prototypes of dielectric 3D frequency selective structures working in the millimeter-wave band are designed, simulated, and manufactured using VAT photopolymerization. These prototypes are subsequently metallized using metallic paint atomization and electroplating. The manufactured prototypes have been carefully selected, considering their design complexity, starting with the simplest, the square aperture, the medium complexity, the woodpile structure, and the most complex, the torus structure. Then, each structure is measured before and after the metallization process using a measurement bench. The metallization used for the measurement is nickel spray flowed by the copper electroplating. For the electroplating, a detailed table showing the total area to be metallized and the current applied is also provided. Finally, the effectiveness of both metallization techniques is compared with the simulations performed using CST Microwave Studio. Results indicate that a shifted and reduced band-pass is obtained in some structures. On the other hand, for very complex structures, as in the torus case, band-pass with lower loss is obtained using copper electroplating, thus allowing the manufacturing of inductive 3D frequency selective structures in the millimeter-wave band at a low cost.


2012 ◽  
Vol E95.C (10) ◽  
pp. 1635-1642 ◽  
Author(s):  
Yuanfeng SHE ◽  
Jiro HIROKAWA ◽  
Makoto ANDO ◽  
Daisuke HANATANI ◽  
Masahiro FUJIMOTO

2017 ◽  
Vol 76 (10) ◽  
pp. 903-918
Author(s):  
A. V. Varavin ◽  
G. P. Ermak ◽  
A. S. Vasilev ◽  
A. V. Fateev ◽  
N. V. Varavin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document