frequency converter
Recently Published Documents


TOTAL DOCUMENTS

1219
(FIVE YEARS 296)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Bin Li ◽  
Shihao Jia

AbstractArc fault in the three-phase load circuit may cause fire, resulting in production interruption and even worse, it will cause casualties. In order to effectively detect the arc fault in the three-phase circuit, series arc fault experiments of three-phase motor load and frequency converter were carried out under different current conditions. Firstly, variational mode decomposition (VMD) was performed for each cycle of A-phase current, and then the VMD energy entropy and sample entropy were calculated. Secondly, the noise-dominated component was removed according to the permutation entropy, then the average value after first-order difference of the half-cycle reconstructed signal was obtained. An arc fault diagnosis model of extreme learning machine (ELM) optimized by sparrow search algorithm (SSA) was established. The feature vectors were divided into training group and test group to train the model and test its fault diagnosis accuracy. Compared with GA-ELM, PSO-ELM, support vector machine (SVM) and SSA-SVM, the experimental results show that the proposed method can identify the series arc fault accurately and more quickly.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 519
Author(s):  
Zhonghuan Su ◽  
Longfu Luo ◽  
Jun Liu ◽  
Zhongxiang Li ◽  
Hu Luo ◽  
...  

Since the transmission distance of submarine cable transmission is inversely proportional to the input frequency, to solve the problem of large losses in the transmission process of offshore wind power, this paper proposes a three-frequency transformer which enables the output of 50 Hz at the input of 50/3 Hz excitation. In this paper, the magnetic flux of a three-dimensional wound core transformer is analytically modeled, the existing condition of magnetic flux harmonics of a three-dimensional wound core transformer is analyzed, the distribution of harmonic content in magnetic flux is obtained, and the principle of realizing frequency conversion is expounded. Secondly, the finite element analysis of the frequency converter is carried out. Finally, a prototype of a frequency transformer is made and tested to verify the correctness of the proposed scheme.


2022 ◽  
Vol 14 (2) ◽  
pp. 653
Author(s):  
Florian Julian Lugauer ◽  
Josef Kainz ◽  
Elena Gehlich ◽  
Matthias Gaderer

Storage technologies are an emerging element in the further expansion of renewable energy generation. A decentralized micro-pumped storage power plant can reduce the load on the grid and contribute to the expansion of renewable energies. This paper establishes favorable boundary conditions for the economic operation of a micro-pump storage (MPS) system. The evaluation is performed by means of a custom-built simulation model based on pump and turbine maps which are either given by the manufacturer, calculated according to rules established in studies, or extended using similarity laws. Among other criteria, the technical and economic characteristics regarding micro-pump storage using 11 pumps as turbines controlled by a frequency converter for various generation and load scenarios are evaluated. The economical concept is based on a small company (e.g., a dairy farmer) reducing its electricity consumption from the grid by storing the electricity generated by a photovoltaic system in an MPS using a pump as a turbine. The results show that due to the high specific costs incurred, systems with a nominal output in excess of around 22 kW and with heads beyond approximately 70 m are the most profitable. In the most economical case, a levelized cost of electricity (LCOE) of 29.2 €cents/kWh and total storage efficiency of 42.0% is achieved by optimizing the system for the highest profitability.


Author(s):  
Denis Krylov ◽  
Olga Kholod

The vast majority of electricity is used by industrial facilities in a converted form. At the same time, the use of semiconductor converters to obtain the required load parameters is intensively increasing. Current trends in the development and improvement of semiconductor converters are aimed at energy saving by improving their quality of work and reducing the impact on the power supply, load, and related consumers. Frequency converter with DC insert has become widespread and widely used. Its scheme is mainly based on an uncontrolled diode rectifier and an autonomous voltage inverter. Uncontrolled rectifiers are simple and reliable, but have two main disadvantages: the impossibility to recover electricity to the supply network and distortions of the source current shape. We can get rid of these disadvantages by using an active rectifier made according to the voltage source scheme instead of an uncontrolled rectifier. The operation of an active rectifier significantly depends on the type of its control system structure. This article aims to to improve the structure of the switches control system of the active rectifier scheme – voltage source built using a vector calculation algorithm; creation of a MatLab model of a three-phase active-controlled rectifier operating with a fixed modulation frequency and analysis of the influence of the input inductance value on the quality of its operation. The simulation results confirm that the improved structure of the vector control system proposed by the authors ensures high-quality operation of the active rectifier and electromagnetic compatibility of the frequency converter with the power supply network at the level allowed by the standards; simplification of the representation mathematical apparatus of the generalized vectors of currents and voltages at the construction of a vector control system of the active rectifier – voltage source practically did not influence qualitative indicators of the converter work in any way; a network filter must be used to eliminate the final distortions introduced into the source voltage by an additional nonlinear load.


Author(s):  
Yurii Martynov ◽  
Oleksandr Petrenko ◽  
Borys Liubarskyi

Contemporary tendencies relentlessly dictate the conditions for the appearance of a more qualitative, reliable and comfortable elevator chain for the rolling stock of a vertical motion. At the same time, the issues of energy saving and cost-effective use of resources gain currency against the background of rising prices for energy carriers and market prices for various elements that play an essential role in the availability of many electromechanical systems. Unfortunately, attention was paid to the availability of above problems in the elevator sector when the majority of the elevators (about 60% of them) outlived their technical service life that ensured the reliable operation. As a matter of fact, an amazingly important issue is relating to the embedment of reliable, durable and economically substantiated components of electromechanical systems into contemporary Ukrainian elevators. The purpose of the research done was to define the main parameters and performances of the asynchronous elevator motor of an ADB180M6 type. The motor is powered from the industrial network of 50 Hz and the frequency converter with the frequency of 50Hz and 16.6 Hz. This scientific paper uses the methods of physical investigations. The elevator motor test data satisfy the reliability parameters that make any elevator user feel comfortable. The main measurement data obtained for the engine No43886 of an ADB180M6 type powered from the frequency converter “Altivar” of 22kW with the motor speed of 910 rpm and 289 rpm satisfy the requirements of the regulatory documentation. The noise level is within satisfactory margins.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-11
Author(s):  
Grzegorz Szerszeń ◽  
Damian Zygadło

The paper presents the construction of a three-phase frequency converter with the possibility of choosing the type of PWM modulation and a smooth change of the frequency of the modulated signal. In a practical way, various inverter control algorithms were implemented in the same hardware system using the STM ARM Cortex M3 processor. The use of THIPWM modulation allowed to reduce the harmonic content in the output signal and effectively use the possibilities of the power source. The system can choose one of two scalar control algorithms, with the option of compensation for the influence of the stator resistance on the motor shaft torque in the initial range of the linear control characteristic at a constant voltage to frequency ratio. The research confirmed that the most advantageous type of PWM in this system is unipolar double-edge modulation. The use of the THIPWM method resulted in a gain in the amplitude of the fundamental harmonic of the output voltage for the three-phase inverter operation mode compared to the SPWM method. The appropriate precision of the frequency control step was also obtained, and the test results confirmed the functionality of the converter.


Author(s):  
Denis Barabanov ◽  
Aleksandr Pugachev

Simulation of induction motor electric drive with multi-level voltage source inverter frequency converter are carried out, the comparative simulation results are presented and discussed, the recommendations on further investigations are highlighted.


Author(s):  
Evgeniy Kinev ◽  
Aleksey Tyapin ◽  
Matvey Kolodochkin ◽  
Vasiliy Panteleev

The problems of modeling in the Matlab environment the modes of the MHD-stirring of aluminum melt in furnaces, taking into account the distribution network. It is noted that the operation of frequency inverters of the power supply system sharply complicates the electromagnetic environment in a network of limited power. It is proposed to apply a complex of models to assess the possibility of reducing the distortion of the network currents by modifying the rectifier control algorithms, while maintaining the stability of the DC bus of the frequency converter.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 321
Author(s):  
Viacheslav Zakharov ◽  
Tatiana Minav

Transitioning from a valve- to pump-controlled system has been observed in working hydraulics to reduce energy consumption and accelerate the response to decarbonization requirements in Non-road Mobile Machinery (NRMM). The utilization of an electric motor as a prime mover significantly enhances the chances of completing this task. While the concept of combining hydraulics with an electric motor is not new, the functionality of electro-hydraulics can be improved due to multidisciplinary domains, the impact of the electric drive and its control is usually underestimated. Thus, this study aims to evaluate the influence of hydraulics on electric drive operational characteristics in pump-controlled actuators. It utilizes an electro-hydraulic model and simulation study under various conditions, a stability analysis, and a Pulse Width Modulation (PWM) of the frequency converter (FC) evaluation on a selected variable speed pump-controlled actuator to demonstrate the influence of hydraulics on an electric drive. Experimental validation of the model demonstrated an acceptable accuracy of 5%. Moreover, the stability analysis indicated a rise time of about 0.051 s, an overshoot of 0.53%, a transient process time of 0.13 s, and a steady-state value difference of 0.16%; all of which guarantees stable operation of the electric drive with a hydraulic load. In addition, an optimal PWM of an FC frequency of 5 kHz was selected to guarantee accurate speed control with minimum overshoot.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2864
Author(s):  
Florina Scarlatache ◽  
Gheorghe Grigoras ◽  
Vlad-Andrei Scarlatache ◽  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov

Innovative practices in irrigation systems can bring improvements in terms of economic efficiency and, at the same time, can reduce environmental impacts. Investment in high-tech technologies frequently involves additional costs, but an efficient water management system can increase the lifetime of the equipment. The most utilized electronic device for a smart management, used to pump units from irrigation systems, is the frequency converter. This device can regulate the speed of the motors that control the pumps according to the consumption of water, ensuring that it does not pump more water than is needed. This paper develops a new operating algorithm that ensures the operation of the pumping group at safe operating intervals and identifies the equivalent pump operating points for the entire flow range and pumping height of the pumping group in order to bring smart management to irrigation systems. The parameters monitored and collected for each vertical pump refers to the voltage, current, frequency (speeds) and flow of each hydraulic operating mode. The methodology used is based on the principle of creating an expert system to optimize energy consumption in the pumping groups. The proposed methodology was tested on an irrigation system that includes a pumping group with five pumps, showing its effectiveness in obtaining the optimal solution with a relatively low computational burden and without the violation of any system constraints under any operating conditions.


Sign in / Sign up

Export Citation Format

Share Document