heterodyne interferometer
Recently Published Documents


TOTAL DOCUMENTS

425
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5788
Author(s):  
Yanqi Zhang ◽  
Adam S. Hines ◽  
Guillermo Valdes ◽  
Felipe Guzman

We present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A noise floor of 3.31×10−11m/Hz at 100 mHz is achieved after applying our noise subtraction algorithm to a benchtop prototype interferometer that showed a noise level of 2.76×10−10m/Hz at 100 mHz when tested in vacuum at levels of 3×10−5 Torr. Based on the previous results, we investigated noise estimation and subtraction techniques of non-linear optical pathlength noise, laser frequency noise, and temperature fluctuations in heterodyne laser interferometers. For each noise source, we identified its contribution and removed it from the measurement by linear fitting or a spectral analysis algorithm. The noise correction algorithm we present in this article can be generally applied to heterodyne laser interferometers.


2021 ◽  
pp. 2140011
Author(s):  
Shi Li ◽  
Wei Li ◽  
Sitian Gao ◽  
Xiaodong Hu

In this study, a tracing method for a scanning electron microscope was developed based on a heterodyne interferometer, which can directly trace the measured values to the laser wavelength and then to the internationally defined meter length reference. In this method, a sample scanning motion is introduced, and the measuring mirror of the interferometer is fixed on the sample stage. The movement and displacement of the sample stage is recorded by the laser interferometer displacement measurement system, which synchronously collects the secondary electrons or backscattered electron signals excited on the sample surface. The feature size of the sample is measured, and the value can be traced directly to the international unit of length using the frequency-stabilized laser reference, which proves that the proposed method is an absolute measurement method. This study analyzed the specific technology implementation methods and experimental results, including positioning control of the displacement system and its measurement and control during the measurement process. Measurement uncertainty budgets are also discussed. Experimental measurements were carried out and their accuracy was verified. Results showed that this method could effectively obtain the performance parameters of the feature size intuitively and significantly improve the measurement accuracy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming Jin ◽  
Shui-Jing Tang ◽  
Jin-Hui Chen ◽  
Xiao-Chong Yu ◽  
Haowen Shu ◽  
...  

AbstractOptical evanescent sensors can non-invasively detect unlabeled nanoscale objects in real time with unprecedented sensitivity, enabling a variety of advances in fundamental physics and biological applications. However, the intrinsic low-frequency noise therein with an approximately 1/f-shaped spectral density imposes an ultimate detection limit for monitoring many paramount processes, such as antigen-antibody reactions, cell motions and DNA hybridizations. Here, we propose and demonstrate a 1/f-noise-free optical sensor through an up-converted detection system. Experimentally, in a CMOS-compatible heterodyne interferometer, the sampling noise amplitude is suppressed by two orders of magnitude. It pushes the label-free single-nanoparticle detection limit down to the attogram level without exploiting cavity resonances, plasmonic effects, or surface charges on the analytes. Single polystyrene nanobeads and HIV-1 virus-like particles are detected as a proof-of-concept demonstration for airborne biosensing. Based on integrated waveguide arrays, our devices hold great potentials for multiplexed and rapid sensing of diverse viruses or molecules.


Sign in / Sign up

Export Citation Format

Share Document