The Role of Methyl Salicylate in Prey Searching Behavior of the Predatory Mite Phytoseiulus persimilis

2004 ◽  
Vol 30 (2) ◽  
pp. 255-271 ◽  
Author(s):  
Jetske G. De Boer ◽  
Marcel Dicke
Author(s):  
El-laithy A.y. M., E, M.elseedy ◽  
Hoda E. Hussein

A field experiment was carried out to evaluate the efficacy of the native predatory mite Cydnoseius negevi (Swirski and Amitai) (=Typlodromus negevi) as a biological control agent for Bemisia tabaci (Gennadius) complex, Onion thrips Thrips tapaci (Lindeman) and Tetranychus urticae (Koch). The efficacy of Phytoseiulus persimilis (Athias-Henriot) against these pests was also evaluated. The data obtained revealed reduction in population density of the above-mentioned pests in the experimental plots for P. persimilis and C. negivi compared to the control plot. Mean population density of each of the pests ranging from 32.2–0.5, 284.4–2.0 and 441.8–2.0 individuals / leaf for T. urticae, in the three plots respectively. The mean values of B. tabaci fluctuated between 41.1–2.1, 16.2–1.0 and 57.3–3.6. individuals / leaf and T. tabaci between 20.1–2.6, 13.7–1.4 and 24.9–1.9 individuals / leaf respectively. A slight non-consumptive negative effect is shown by P. persimilis against the pests B. tabaci and T. tabaci. This preliminary experiment hopefully will enhance the role of the native predator C. negevi to play a role in bio-control and its mass augmentation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuki Togashi ◽  
Mifumi Goto ◽  
Hojun Rim ◽  
Sayaka Hattori ◽  
Rika Ozawa ◽  
...  

2019 ◽  
Vol 68 ◽  
pp. 37-48 ◽  
Author(s):  
Kazumu Kuramitsu ◽  
Teruhito Ishihara ◽  
Aki Sugita ◽  
Thitaree Yooboon ◽  
Barry Lustig ◽  
...  

Woodwasps (Hymenoptera: Siricidae) are saproxylic insects and a common forest pest. Siricid woodwasps are classified into two subfamilies: Siricinae and Tremecinae. All known symbiotic fungi of Siricinae are in the genusAmylostereumBoidin while some species of Tremecinae have been observed to have a relationship with the fungusCerrenaunicolor(Bull.) Murrill. Previous studies about the host searching behavior of woodwasps and their parasitoids have focused primarily on the subfamily Siricinae.We analyzed the role ofC.unicolorvolatiles on the host searching behavior ofTremexapicalisMatsumura (Hymenoptera: Siricidae: Tremecinae) and its parasitoid Ibalia (Tremibalia) japonica Matsumura (Hymenoptera: Ibaliidae). The results of an olfactory response experiment indicated that the females ofT.apicalisand its parasitoid find their respective hosts using volatiles fromC.unicolor. Using DNA barcode, we identified basidiocarps on the trees infested withT.apicalis.The basidiocarps were all white-rot fungi that cause sapwood decay, includingC.unicolor. Two additional species that we identified belonged to genera closely related toC.unicolor.Woodwasp species are known to carry symbiotic fungi in a pair of specialized sacs called mycangia. Notably we found that mycangia-like structures were absent in the abdomens ofT.apicalisfemales. To the best of our knowledge,Xerisspectrum(Linnaeus) (Hymenoptera: Siricidae) is the only reported example of woodwasp species that do not contain symbiotic fungi in their bodies.Our results suggested that: (1)T.apicalisfemales search for host wood that is already infected with sapwood decaying fungus using volatile compounds; (2)T.apicalis’ female parasitoid also uses volatile compounds from fungus to locate wood that is infested with its potential host.


Oecologia ◽  
2019 ◽  
Vol 192 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Sophie Le Hesran ◽  
Thomas Groot ◽  
Markus Knapp ◽  
Tibor Bukovinszky ◽  
Jovano Erris Nugroho ◽  
...  

AbstractThe ability of an organism to adapt to short-term environmental changes within its lifetime is of fundamental importance. This adaptation may occur through phenotypic plasticity. Insects and mites, in particular, are sensitive to changes in temperature and humidity, especially during the juvenile stages. We studied the role of phenotypic plasticity in the adaptation of eggs to different relative humidity conditions, in the predatory mite Phytoseiulus persimilis, used worldwide as a biological control agent of the spider mite Tetranychus urticae. The biocontrol efficacy of P. persimilis decreases under dry conditions, partly because P. persimilis eggs are sensitive to drought. We exposed P. persimilis adult females from two different strains to constant and variable humidity regimes and evaluated the hatching rate of their eggs in dry conditions, as well as the survival and oviposition rates of these females. Whereas the eggs laid by P. persimilis females exposed to constant high humidity did not survive in dry conditions, females exposed to constant low humidity started laying drought-resistant eggs after 24 h of exposure. Survival and oviposition rates of the females were affected by humidity: females laid fewer eggs under constant low humidity and had a shorter lifespan under constant high and constant low humidity. The humidity regimes tested had similar effects across the two P. persimilis strains. Our results demonstrate that transgenerational phenotypic plasticity, called maternal effect, allows P. persimilis females to prepare their offspring for dry conditions.


Sign in / Sign up

Export Citation Format

Share Document