scholarly journals A Meta-Learning Method to Select the Kernel Width in Support Vector Regression

2004 ◽  
Vol 54 (3) ◽  
pp. 195-209 ◽  
Author(s):  
Carlos Soares ◽  
Pavel B. Brazdil ◽  
Petr Kuba
2021 ◽  
Author(s):  
Bu-Yo Kim ◽  
Joo Wan Cha ◽  
Ki-Ho Chang

Abstract. In this study, image data features and machine learning methods were used to calculate 24-h continuous cloud cover from image data obtained by a camera-based imager on the ground. The image data features were the time (Julian day and hour), solar zenith angle, and statistical characteristics of the red-blue ratio, blue–red difference, and luminance. These features were determined from the red, green, and blue brightness of images subjected to a pre-processing process involving masking removal and distortion correction. The collected image data were divided into training, validation, and test sets and were used to optimize and evaluate the accuracy of each machine learning method. The cloud cover calculated by each machine learning method was verified with human-eye observation data from a manned observatory. Supervised machine learning models suitable for nowcasting, namely, support vector regression, random forest, gradient boosting machine, k-nearest neighbor, artificial neural network, and multiple linear regression methods, were employed and their results were compared. The best learning results were obtained by the support vector regression model, which had an accuracy, recall, and precision of 0.94, 0.70, and 0.76, respectively. Further, bias, root mean square error, and correlation coefficient values of 0.04 tenth, 1.45 tenths, and 0.93, respectively, were obtained for the cloud cover calculated using the test set. When the difference between the calculated and observed cloud cover was allowed to range between 0, 1, and 2 tenths, high agreement of approximately 42 %, 79 %, and 91 %, respectively, were obtained. The proposed system involving a ground-based imager and machine learning methods is expected to be suitable for application as an automated system to replace human-eye observations.


Author(s):  
Dan Ling ◽  
Hong-Zhong Huang ◽  
Qiang Miao ◽  
Bo Yang

The Weibull distribution is widely used in life testing and reliability studies. Weibull analysis is the process of discovering the trends in product or system failure data, and using them to predict future failures in similar situations. Support Vector Regression is a machine learning method based on statistical learning theory, which has been applied successfully to solve forecasting problems in many fields. In this paper, support vector regression is used to build a parameter estimating model for Weibull distribution. Numerical examples are presented to show good performance of this method.


2020 ◽  
pp. 1-25
Author(s):  
Shadrack Kwasa ◽  
Daniel Jones

Abstract The aim of the paper is to derive a simple, implementable machine learning method for general insurance losses. An algorithm for learning a general insurance loss triangle is developed and justified. An argument is made for applying support vector regression (SVR) to this learning task (in order to facilitate transparency of the learning method as compared to more “black-box” methods such as deep neural networks), and SVR methodology derived is specifically applied to this learning task. A further argument for preserving the statistical features of the loss data in the SVR machine is made. A bespoke kernel function that preserves the statistical features of the loss data is derived from first principles and called the exponential dispersion family (EDF) kernel. Features of the EDF kernel are explored, and the kernel is applied to an insurance loss estimation exercise for homogeneous risk of three different insurers. Results of the cumulative losses and ultimate losses predicted by the EDF kernel are compared to losses predicted by the radial basis function kernel and the chain-ladder method. A backtest of the developed method is performed. A discussion of the results and their implications follows.


2021 ◽  
Vol 14 (10) ◽  
pp. 6695-6710
Author(s):  
Bu-Yo Kim ◽  
Joo Wan Cha ◽  
Ki-Ho Chang

Abstract. In this study, image data features and machine learning methods were used to calculate 24 h continuous cloud cover from image data obtained by a camera-based imager on the ground. The image data features were the time (Julian day and hour), solar zenith angle, and statistical characteristics of the red–blue ratio, blue–red difference, and luminance. These features were determined from the red, green, and blue brightness of images subjected to a pre-processing process involving masking removal and distortion correction. The collected image data were divided into training, validation, and test sets and were used to optimize and evaluate the accuracy of each machine learning method. The cloud cover calculated by each machine learning method was verified with human-eye observation data from a manned observatory. Supervised machine learning models suitable for nowcasting, namely, support vector regression, random forest, gradient boosting machine, k-nearest neighbor, artificial neural network, and multiple linear regression methods, were employed and their results were compared. The best learning results were obtained by the support vector regression model, which had an accuracy, recall, and precision of 0.94, 0.70, and 0.76, respectively. Further, bias, root mean square error, and correlation coefficient values of 0.04 tenths, 1.45 tenths, and 0.93, respectively, were obtained for the cloud cover calculated using the test set. When the difference between the calculated and observed cloud cover was allowed to range between 0, 1, and 2 tenths, high agreements of approximately 42 %, 79 %, and 91 %, respectively, were obtained. The proposed system involving a ground-based imager and machine learning methods is expected to be suitable for application as an automated system to replace human-eye observations.


2016 ◽  
Vol 136 (12) ◽  
pp. 898-907 ◽  
Author(s):  
Joao Gari da Silva Fonseca Junior ◽  
Hideaki Ohtake ◽  
Takashi Oozeki ◽  
Kazuhiko Ogimoto

Sign in / Sign up

Export Citation Format

Share Document