chain ladder method
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 1-32
Author(s):  
Ioannis Badounas ◽  
Apostolos Bozikas ◽  
Georgios Pitselis

Abstract It is well known that the presence of outliers can mis-estimate (underestimate or overestimate) the overall reserve in the chain-ladder method, when we consider a linear regression model, based on the assumption that the coefficients are fixed and identical from one observation to another. By relaxing the usual regression assumptions and applying a regression with randomly varying coefficients, we have a similar phenomenon, i.e., mis-estimation of the overall reserves. The lack of robustness of loss reserving regression with random coefficients on incremental payment estimators leads to the development of this paper, aiming to apply robust statistical procedures to the loss reserving estimation when regression coefficients are random. Numerical results of the proposed method are illustrated and compared with the results that were obtained by linear regression with fixed coefficients.


Author(s):  
Ria Novita Suwandani ◽  
Yogo Purwono

This study aims to calculate the allowance for losses by applying Gaussian Process regression to estimate future claims. Modeling is done on motor vehicle insurance data. The data used in this study are historical data on PT XYZ's motor vehicle insurance business line during 2017 and 2019 (January 2017 to December 2019). Data analysis will be carried out on the 2017 - 2019 data to obtain an estimate of the claim reserves in the following year, namely 2018 - 2020. This study uses the Chain Ladder method which is the most popular loss reserving method in theory and practice. The estimation results show that the Gaussian Process Regression method is very flexible and can be applied without much adjustment. These results were also compared with the Chain Ladder method. Estimated claim reserves for PT XYZ's motor vehicle business line using the chain-ladder method, the company must provide funds for 2017 of 8,997,979,222 IDR in 2018 16,194,503,605 IDR in 2019 amounting to Rp. 1,719,764,520 for backup. Meanwhile, by using the Bayessian Gaussian Process method, the company must provide funds for 2017 of 9,060,965,077 IDR in 2018 amounting to 16,307,865,130 IDR, and in 2019 1,731,802,871 IDR for backup. The more conservative Bayessian Gaussian Process method. Motor vehicle insurance data has a short development time (claims occur) so that it is included in the short-tail type of business.


2021 ◽  
Author(s):  
Elitsa Raeva ◽  
Velizar Pavlov ◽  
Simona Georgieva

2020 ◽  
Vol 12 (12) ◽  
pp. 14
Author(s):  
Afaf Antar Zohry ◽  
Mostafa Abdelghany Ahmed

The chain ladder method is the most widely used method of estimating claims reserves due to its simplicity and ease of application. It is very important to know the accuracy of the resulting estimates. Murphy presented a recursive model to estimate the standard error of claims reserves estimates, in line with the solvency ii requirements as a new regulatory framework adjusted according to risk, which requires the necessity to estimate the error and uncertainty of the claims reserving estimates. In Murphy's model, the mean square error (MSE) is analyzed into its components: variance and bias. In this paper, the recursive model of Murphy was used to estimate the prediction error in claims reserves estimates of General Accident & Miscellaneous Insurance in one of the Egyptian insurance companies.


2020 ◽  
pp. 1-25
Author(s):  
Shadrack Kwasa ◽  
Daniel Jones

Abstract The aim of the paper is to derive a simple, implementable machine learning method for general insurance losses. An algorithm for learning a general insurance loss triangle is developed and justified. An argument is made for applying support vector regression (SVR) to this learning task (in order to facilitate transparency of the learning method as compared to more “black-box” methods such as deep neural networks), and SVR methodology derived is specifically applied to this learning task. A further argument for preserving the statistical features of the loss data in the SVR machine is made. A bespoke kernel function that preserves the statistical features of the loss data is derived from first principles and called the exponential dispersion family (EDF) kernel. Features of the EDF kernel are explored, and the kernel is applied to an insurance loss estimation exercise for homogeneous risk of three different insurers. Results of the cumulative losses and ultimate losses predicted by the EDF kernel are compared to losses predicted by the radial basis function kernel and the chain-ladder method. A backtest of the developed method is performed. A discussion of the results and their implications follows.


Risks ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Łukasz Delong ◽  
Mario V. Wüthrich

The goal of this paper is to develop regression models and postulate distributions which can be used in practice to describe the joint development process of individual claim payments and claim incurred. We apply neural networks to estimate our regression models. As regressors we use the whole claim history of incremental payments and claim incurred, as well as any relevant feature information which is available to describe individual claims and their development characteristics. Our models are calibrated and tested on a real data set, and the results are benchmarked with the Chain-Ladder method. Our analysis focuses on the development of the so-called Reported But Not Settled (RBNS) claims. We show benefits of using deep neural network and the whole claim history in our prediction problem.


Risks ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 119 ◽  
Author(s):  
Valandis Elpidorou ◽  
Carolin Margraf ◽  
María Dolores Martínez-Miranda ◽  
Bent Nielsen

A new Bornhuetter–Ferguson method is suggested herein. This is a variant of the traditional chain ladder method. The actuary can adjust the relative ultimates using externally estimated relative ultimates. These correspond to linear constraints on the Poisson likelihood underpinning the chain ladder method. Adjusted cash flow estimates were obtained as constrained maximum likelihood estimates. The statistical derivation of the new method is provided in the generalised linear model framework. A related approach in the literature, combining unconstrained and constrained maximum likelihood estimates, is presented in the same framework and compared theoretically. A data illustration is described using a motor portfolio from a Greek insurer.


Sign in / Sign up

Export Citation Format

Share Document