Generalized Deformation Curve for High-Strength Steel over a Wide Range of Strain Rates

2004 ◽  
Vol 36 (2) ◽  
pp. 165-170 ◽  
Author(s):  
G. V. Stepanov ◽  
V. I. Zubov
2011 ◽  
Vol 82 ◽  
pp. 124-129 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Stefano Bianchi

In this paper the first results of the mechanical characterization in tension of two high strength alloys in a wide range of strain rates are presented. Different experimental techniques were used for different strain rates: a universal machine, a Hydro-Pneumatic Machine and a JRC-Split Hopkinson Tensile Bar. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. An increase of the stress at a given strain increasing the strain-rate from 10-3 to 103 s-1, a moderate strain-rate sensitivity of the uniform and fracture strain, a poor reduction of the cross-sectional area at fracture with increasing the strain-rate were shown. Based on these experimental results the parameters required by the Johnson-Cook constitutive law were determined.


1978 ◽  
Vol 5 (3) ◽  
pp. 340-351 ◽  
Author(s):  
J. L. Gordon

At present there are no national codes for the design of exposed hydro-electric penstocks. Thus an engineer must either make reference to other national codes for similar work, such as the American Society of Mechanical Engineers boiler and pressure vessel code or the American Water Works Association Standard for steel water piping, or he must write his own code and is then faced with the decision of having to select design criteria that must cover a wide range of steels; different operating and waterhammer conditions; a wide range of quality control procedures used in manufacture and erection of the penstock; and different types of penstocks, isostatic where the stresses can be calculated with precision, and hyperstatic where the stress calculation is more imprecise. This paper discusses design criteria, factors of safety, and corresponding quality control procedures that can be used for either isostatic or hyperstatic penstocks using mild, intermediate, or high strength steel for penstocks supplying reaction of impulse turbines.


1994 ◽  
Vol 04 (C8) ◽  
pp. C8-471-C8-476 ◽  
Author(s):  
B. D. Goldthorpe ◽  
A. L. Butler ◽  
P. Church

2015 ◽  
Vol 662 ◽  
pp. 205-208 ◽  
Author(s):  
Ľuboš Kaščák ◽  
Emil Spišák ◽  
Jacek Mucha

Clinching is a simple, cheap and efficient method of joining that enables to join two or more sheets without any additional elements such as rivets, bolts or nuts. In addition, clinching does not require a surface preparation e.g. drilling (riveting), cleaning and roughening of the surface (adhesive boding) and other types of surface preparations (arc welding). Clinching is utilized in a wide range of applications and can be applied to different materials such as low carbon steel sheets, high-strength steel sheets, aluminium alloys, magnesium alloys. The paper presents the results of evaluation of clinched joint properties. The advanced high-strength steel sheet DP600 in combination with the drawing grade steel sheets DC06, DX51D+Z and high-strength low alloy steel sheet H220PD were used for experiments. The influence of position of the sheets relative to the punch and die of the tool on the carrying capacities of the clinched joints was observed as well. The tension test and microhardness test were used for the evaluation of clinched joint properties.


Author(s):  
Maen Alkhader ◽  
Laurence Bodelot

High-strength low alloy steels (HSLA) have been designed to replace high-yield (HY) strength steels in naval applications involving impact loading as the latter, which contain more carbon, require complicated welding processes. The critical role of HSLA-100 steel requires achieving an accurate understanding of its behavior under dynamic loading. Accordingly, in this paper, we experimentally investigate its behavior, establish a model for its constitutive response at high-strain rates, and discuss its dynamic failure mode. The large strain and high-strain-rate mechanical constitutive behavior of high strength low alloy steel HSLA-100 is experimentally characterized over a wide range of strain rates, ranging from 10−3 s−1 to 104 s−1. The ability of HSLA-100 steel to store energy of cold work in adiabatic conditions is assessed through the direct measurement of the fraction of plastic energy converted into heat. The susceptibility of HSLA-100 steel to failure due to the formation and development of adiabatic shear bands (ASB) is investigated from two perspectives, the well-accepted failure strain criterion and the newly suggested plastic energy criterion [1]. Our experimental results show that HSLA-100 steel has apparent strain rate sensitivity at rates exceeding 3000 s−1 and has minimal ability to store energy of cold work at high deformation rate. In addition, both strain based and energy based failure criteria are effective in describing the propensity of HSLA-100 steel to dynamic failure (adiabatic shear band). Finally, we use the experimental results to determine constants for a Johnson-Cook model describing the constitutive response of HSLA-100. The implementation of this model in a commercial finite element code gives predictions capturing properly the observed experimental behavior. High-strain rate, thermomechanical processes, constitutive behavior, failure, finite elements, Kolsky bar, HSLA-100.


Sign in / Sign up

Export Citation Format

Share Document