Transformation of Lotus corniculatus Plants with Escherichia coli Asparagine Synthetase A: Effect on Nitrogen Assimilation and Plant Development

2004 ◽  
Vol 78 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Michele Bellucci ◽  
Luisa Ederli ◽  
Francesca De Marchis ◽  
Stefania Pasqualini ◽  
Sergio Arcioni
1997 ◽  
Vol 9 (8) ◽  
pp. 1339 ◽  
Author(s):  
Lifang Shi ◽  
Scott N. Twary ◽  
Hirofumi Yoshioka ◽  
Robert G. Gregerson ◽  
Susan S. Miller ◽  
...  

1987 ◽  
Vol 7 (5) ◽  
pp. 1623-1628
Author(s):  
M Cartier ◽  
M W Chang ◽  
C P Stanners

A new dominant amplifiable selective system for use in bacterium-animal cell shuttle vectors was developed by the insertion of a 2-kilobase genomic fragment containing the cloned Escherichia coli gene for asparagine synthetase (AS) into the pBR322-simian virus 40 recombinant vector pSV2 so as to place the translational initiator codon for the bacterial AS about 1,000 base pairs downstream from the simian virus 40 early promoter. This new construct, pSV2-AS, retains bacterial sequences for transcriptional and translational initiation and so can express AS in bacteria. The construct can also complement AS- mutants of mammalian cells, giving AS+ transfectants capable of growth in medium lacking asparagine, with relatively high efficiency (about 300 colonies per microgram of DNA per 10(6) cells exposed). The vector can be amplified up to 100-fold in such AS+ transfectants by selection in asparagine-free medium containing increasing concentrations of the AS inhibitor beta-aspartyl hydroxamate. AS+ transfectants were found to be much more resistant to a second AS inhibitor, Albizziin, than were normal AS+ animal cell lines. This difference, which may indicate a strong resistance of the bacterial AS enzyme to Albizziin, was exploited to develop an effective selection for bacterial AS transfectants of a number of wild-type AS+ cell lines of rat, Chinese hamster, mouse, and human origin. LR-73 cells, a Chinese hamster AS+ cell line, were transfected with pSV2-AS with an efficiency of about 1,000 colonies per 0.5 microgram of DNA per 10(6) cells. The integrated construct in these cells was amplified by incubation of the transfectants in increasing concentrations of beta-aspartyl hydroxamate. Advantages and disadvantages of this new dominant, selectable, and amplifiable marker over markers commonly used in shuttle vectors are discussed.


1987 ◽  
Vol 7 (5) ◽  
pp. 1623-1628 ◽  
Author(s):  
M Cartier ◽  
M W Chang ◽  
C P Stanners

A new dominant amplifiable selective system for use in bacterium-animal cell shuttle vectors was developed by the insertion of a 2-kilobase genomic fragment containing the cloned Escherichia coli gene for asparagine synthetase (AS) into the pBR322-simian virus 40 recombinant vector pSV2 so as to place the translational initiator codon for the bacterial AS about 1,000 base pairs downstream from the simian virus 40 early promoter. This new construct, pSV2-AS, retains bacterial sequences for transcriptional and translational initiation and so can express AS in bacteria. The construct can also complement AS- mutants of mammalian cells, giving AS+ transfectants capable of growth in medium lacking asparagine, with relatively high efficiency (about 300 colonies per microgram of DNA per 10(6) cells exposed). The vector can be amplified up to 100-fold in such AS+ transfectants by selection in asparagine-free medium containing increasing concentrations of the AS inhibitor beta-aspartyl hydroxamate. AS+ transfectants were found to be much more resistant to a second AS inhibitor, Albizziin, than were normal AS+ animal cell lines. This difference, which may indicate a strong resistance of the bacterial AS enzyme to Albizziin, was exploited to develop an effective selection for bacterial AS transfectants of a number of wild-type AS+ cell lines of rat, Chinese hamster, mouse, and human origin. LR-73 cells, a Chinese hamster AS+ cell line, were transfected with pSV2-AS with an efficiency of about 1,000 colonies per 0.5 microgram of DNA per 10(6) cells. The integrated construct in these cells was amplified by incubation of the transfectants in increasing concentrations of beta-aspartyl hydroxamate. Advantages and disadvantages of this new dominant, selectable, and amplifiable marker over markers commonly used in shuttle vectors are discussed.


ChemInform ◽  
2010 ◽  
Vol 30 (39) ◽  
pp. no-no
Author(s):  
Mitsuteru Koizumi ◽  
Jun Hiratake ◽  
Toru Nakatsu ◽  
Hiroaki Kato ◽  
Jun'ichi Oda

2002 ◽  
Vol 184 (19) ◽  
pp. 5364-5375 ◽  
Author(s):  
Mariette R. Atkinson ◽  
Timothy A. Blauwkamp ◽  
Alexander J. Ninfa

ABSTRACT Two closely related signal transduction proteins, PII and GlnK, have distinct physiological roles in the regulation of nitrogen assimilation. Here, we examined the physiological roles of PII and GlnK when these proteins were expressed from various regulated or constitutive promoters. The results indicate that the distinct functions of PII and GlnK were correlated with the timing of expression and levels of accumulation of the two proteins. GlnK was functionally converted into PII when its expression was rendered constitutive and at the appropriate level, while PII was functionally converted into GlnK by engineering its expression from the nitrogen-regulated glnK promoter. Also, the physiological roles of both proteins were altered by engineering their expression from the nitrogen-regulated glnA promoter. We hypothesize that the use of two functionally identical PII-like proteins, which have distinct patterns of expression, may allow fine control of Ntr genes over a wide range of environmental conditions. In addition, we describe results suggesting that an additional, unknown mechanism may control the cellular level of GlnK.


Sign in / Sign up

Export Citation Format

Share Document