Error Awareness in a Saccade Countermanding Task

2005 ◽  
Vol 19 (4) ◽  
pp. 275-280 ◽  
Author(s):  
Tanja Endrass ◽  
Cosima Franke ◽  
Norbert Kathmann

Abstract: Stop-signal tasks can be used to analyze mechanisms of action control and error monitoring. Previous event-related potential (ERP) studies indicated enhanced stop-signal N2 amplitudes for unsuccessful compared with successful inhibition. The aim of this study was to further investigate whether stop-signal related and response-related ERP components would reflect different aspects of error processing. ERPs were recorded during a saccade countermanding task, i.e. a stop-signal task with oculomotor response. Error awareness was obtained from subjective accuracy ratings. The response-related error positivity (Pe) was more pronounced for perceived than for unperceived errors whereas awareness of an error did not modulate the magnitude of the error negativity (Ne). This result is in accordance with previous findings. Stop-signal related ERPs revealed enhanced N2 amplitudes for incorrect (unsuccessfully stopped) trials compared with correct trials. However, this enhancement was restricted to perceived errors. The results support the idea that the stop-signal itself provides a performance feedback and the N2 reflects aspects of conscious response monitoring of unsuccessful inhibition.

2021 ◽  
Vol 15 ◽  
Author(s):  
Meng-Tien Hsieh ◽  
Hsinjie Lu ◽  
Chia-I Lin ◽  
Tzu-Han Sun ◽  
Yi-Ru Chen ◽  
...  

The present study aimed to use event-related potentials with the stop-signal task to investigate the effects of trait anxiety on inhibitory control, error monitoring, and post-error adjustments. The stop-signal reaction time (SSRT) was used to evaluate the behavioral competence of inhibitory control. Electrophysiological signals of error-related negativity (ERN) and error positivity (Pe) were used to study error perception and error awareness, respectively. Post-error slowing (PES) was applied to examine the behavioral adjustments after making errors. The results showed that SSRT and PES did not differ significantly between individuals with high trait anxiety (HTA) and those with low trait anxiety (LTA). However, individuals with HTA demonstrated reduced ERN amplitudes and prolonged Pe latencies than those with LTA. Prolonged Pe latencies were also significantly associated with poorer post-error adjustments. In conclusion, HTA led to reduced cortical responses to error monitoring. Furthermore, inefficient conscious awareness of errors might lead to maladaptive post-error adjustments.


2020 ◽  
pp. 1-11
Author(s):  
Jacqueline Bruce ◽  
Katherine C. Pears ◽  
Jennifer Martin McDermott ◽  
Nathan A. Fox ◽  
Philip A. Fisher

Abstract This study examined the impact of a school readiness intervention on external response monitoring in children in foster care. Behavioral and event-related potential (ERP) data were collected during a flanker task from children who received the Kids In Transition to School (KITS) Program (n = 26) and children who received services as usual (n = 19) before and after the intervention. While there were no significant group differences on the behavioral data, the ERP data for the two groups of children significantly differed. Specifically, in contrast to the children who received services as usual, the children who received the KITS Program displayed greater amplitude differences between positive and negative performance feedback over time for the N1, which reflects early attention processes, and feedback-related negativity, which reflects evaluation processes. In addition, although the two groups did not differ on amplitude differences between positive and negative performance feedback for these ERP components before the intervention, the children who received the KITS Program displayed greater amplitude differences than the children who received services as usual after the intervention. These results suggest that the KITS Program had an effect on responsivity to external performance feedback, which may be beneficial during the transition into kindergarten.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S63-S63
Author(s):  
Ya Wang ◽  
Lu-xia Jia ◽  
Xiao-jing Qin ◽  
Jun-yan Ye ◽  
Raymond Chan

Abstract Background Schizotypy, a subclinical group at risk for schizophrenia, have been found to show impairments in response inhibition. Recent studies differentiated proactive inhibition (a preparatory process before the stimuli appears) and reactive inhibition (the inhibition of a pre-potent or already initiated response). However, it remains unclear whether both proactive and reactive inhibition are impaired in schizotypy and what are the neural mechanisms. The present event-related potential study used an adapted stop-signal task to examine the two inhibition processes and the underlying neural mechanisms in schizotypy compared to healthy controls (HC). Methods A total of 21 individuals with schizotypy and 25 matched HC participated in this study. To explore different degrees of proactive inhibition, we set three conditions: a “certain” go condition which no stop signal occurred, a “17% no go” condition in which stop signal would appear in 17% of trials, and a “33% no go” condition in which stop signal would appear in 33% of trials. All participants completed all the conditions, and EEG was recorded when participants completed the task. Results Behavioral results showed that in both schizotypy and HC, the reaction times (RT) of go trials were significantly prolonged as the no go percentage increased, and HC showed significantly longer go RT compared with schizotypy in both “17% no go” and “33% no go” conditions, suggesting greater proactive inhibition in HC. Stop signal reaction times (SSRTs) in “33% no go” condition was shorter than “17% no go” condition in both groups. Schizotypy showed significantly longer SSRTs in both “17% no go” and “33% no go” conditions than HC, indicating schizotypy relied more on reactive inhibition. ERP results showed that schizotypy showed larger overall N1 for go trials than HC irrespective of condition, which may indicate a compensation process in schizotypy. Schizotypy showed smaller N2 on both successful and unsuccessful stop trials in “17% no go” conditions than HC, while no group difference was found in “33% no go” conditions for stop trials, which may indicate impaired error processing. Discussion These results suggested that schizotypy tended to be impaired in both proactive control and reactive control processes.


2021 ◽  
Author(s):  
Peter Egeto

Event-related potentials of performance monitoring, including N2 (conflict monitoring), error-related negativity and error positivity (ERN and Pe; error monitoring), and P3 (inhibition) have been studied. However, conflict monitoring lacks a behavioural measure, and the functional significance of ERN, Pe, and P3 are debated. To address these issues, a behavioural measure of conflict monitoring was tested by subtracting the reaction time (RT) of a simple from a choice RT task to isolate conflict monitoring; the functions of error monitoring and inhibition were examined. The RT difference correlated with the N2 area (longer conflict monitoring related to a larger N2). ERN and Pe areas were negatively and positively correlated with errors, respectively. P3 magnitude and onset were correlated with an inhibition index. The new behavioural measure provides an accessible way to study conflict monitoring. Theories of conflict monitoring for ERN, error awareness for Pe, and inhibition for P3 were replicated and extended.


2012 ◽  
Vol 85 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Magdalena Senderecka ◽  
Anna Grabowska ◽  
Jakub Szewczyk ◽  
Krzysztof Gerc ◽  
Roman Chmylak

2021 ◽  
Vol 11 (4) ◽  
pp. 478
Author(s):  
Trung Van Nguyen ◽  
Prasad Balachandran ◽  
Neil G. Muggleton ◽  
Wei-Kuang Liang ◽  
Chi-Hung Juan

Response inhibition has been widely explored using the stop signal paradigm in the laboratory setting. However, the mechanism that demarcates attentional capture from the motor inhibition process is still unclear. Error monitoring is also involved in the stop signal task. Error responses that do not complete, i.e., partial errors, may require different error monitoring mechanisms relative to an overt error. Thus, in this study, we included a “continue go” (Cont_Go) condition to the stop signal task to investigate the inhibitory control process. To establish the finer difference in error processing (partial vs. full unsuccessful stop (USST)), a grip-force device was used in tandem with electroencephalographic (EEG), and the time-frequency characteristics were computed with Hilbert–Huang transform (HHT). Relative to Cont_Go, HHT results reveal (1) an increased beta and low gamma power for successful stop trials, indicating an electrophysiological index of inhibitory control, (2) an enhanced theta and alpha power for full USST trials that may mirror error processing. Additionally, the higher theta and alpha power observed in partial over full USST trials around 100 ms before the response onset, indicating the early detection of error and the corresponding correction process. Together, this study extends our understanding of the finer motor inhibition control and its dynamic electrophysiological mechanisms.


2021 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Tzlil Einziger ◽  
Mattan S. Ben-Shachar ◽  
Tali Devor ◽  
Michael Shmueli ◽  
Judith G. Auerbach ◽  
...  

We examined the longitudinal predictors of electrophysiological and behavioral markers of inhibitory control in adolescence. Participants were 63 adolescent boys who have been followed since birth as part of a prospective longitudinal study on the developmental pathways to attention-deficit hyperactivity disorder (ADHD). At 17 years of age, they completed the stop-signal task (SST) while electroencephalography (EEG) was continuously recorded. Inhibitory control was evaluated by the stop-signal reaction time (SSRT) as well as by the amplitude of the event-related potential (ERP) component of N2 during successful inhibition. We found that higher inattention symptoms throughout childhood predicted reduced amplitude (i.e., less negative) of the N2 in adolescence. Furthermore, the N2 amplitude was longitudinally predicted by the early precursors of child familial risk for ADHD and early childhood temperament. Specifically, father’s inattention symptoms (measured in the child’s early infancy) and child’s effortful control at 36 months of age directly predicted the N2 amplitude in adolescence, even beyond the consistency of inattention symptoms throughout development. The SSRT was predicted by ADHD symptoms throughout childhood but not by the early precursors. Our findings emphasize the relevance of early familial and temperamental risk for ADHD to the prediction of a later dysfunction in inhibitory control.


2014 ◽  
Vol 26 (7) ◽  
pp. 1528-1545 ◽  
Author(s):  
Anne-Kristin Solbakk ◽  
Ingrid Funderud ◽  
Marianne Løvstad ◽  
Tor Endestad ◽  
Torstein Meling ◽  
...  

Behavioral inhibition and performance monitoring are critical cognitive functions supported by distributed neural networks including the pFC. We examined neurophysiological correlates of motor response inhibition and action monitoring in patients with focal orbitofrontal (OFC) lesions (n = 12) after resection of a primary intracranial tumor or contusion because of traumatic brain injury. Healthy participants served as controls (n = 14). Participants performed a visual stop signal task. We analyzed behavioral performance as well as event-related brain potentials and oscillations. Inhibition difficulty was adjusted individually to yield an equal amount of successful inhibitions across participants. RTs of patients and controls did not differ significantly in go trials or in failed stop trials, and no differences were observed in estimated stop signal RT. However, electrophysiological response patterns during task performance distinguished the groups. Patients with OFC lesions had enhanced P3 amplitudes to congruent condition go signals and to stop signals. In stop trials, patients had attenuated N2 and error-related negativity, but enhanced error positivity. Patients also showed enhanced and prolonged post-error beta band increases for stop errors. This effect was particularly evident in patients whose lesion extended to the subgenual cingulate cortex. In summary, although response inhibition was not impaired, the diminished stop N2 and ERN support a critical role of the OFC in action monitoring. Moreover, the increased stop P3, error positivity, and post-error beta response indicate that OFC injury affected action outcome evaluation and support the notion that the OFC is relevant for the processing of abstract reinforcers such as performing correctly in the task.


Sign in / Sign up

Export Citation Format

Share Document