Modulation of Executive Control in the Task Switching Paradigm With Transcranial Direct Current Stimulation (tDCS)

2016 ◽  
Vol 30 (2) ◽  
pp. 55-65 ◽  
Author(s):  
Tilo Strobach ◽  
Daria Antonenko ◽  
Tamara Schindler ◽  
Agnes Flöel ◽  
Torsten Schubert

Abstract. Executive processing in the task switching paradigm is primarily associated with activation of the lateral prefrontal cortex (lPFC), demonstrated in numerous functional imaging studies (e.g., Brass & von Cramon, 2002 ). However, there are only very few attempts to modulate neural activation related with executive functions and to investigate the effects of this modulation on the performance in this paradigm. To modulate lPFC activity here, we used the non-invasive transcranial Direct Current Stimulation (tDCS; atDCS [1 mA, 20 min] vs. ctDCS [1 mA, 20 min] vs. sham stimulation [1 mA, 30 s]) over the left inferior frontal junction under conditions of single tasks, task repetitions, and task switches in the task switching paradigm. We assessed the performance effects of online tDCS on mixing costs (single tasks vs. task repetitions) as well as on switching costs (task repetitions vs. task switches). In a within-subjects design across three sessions, there was no evidence of stimulation on the magnitude of these cost types. However, when taking a between-subjects perspective in the first session (i.e., after excluding dominant effects of task experience), atDCS showed an increase in mixing costs in contrast to ctDCS and sham. We interpreted this finding in the context of task switching theories on task activation and task inhibition and their neural localizations.

Author(s):  
Kristin Prehn ◽  
Anja Skoglund ◽  
Tilo Strobach

AbstractSwitching between two or more tasks is a key component in our modern world. Task switching, however, requires time-consuming executive control processes and thus produces performance costs when compared to task repetitions. While executive control during task switching has been associated with activation in the lateral prefrontal cortex (lPFC), only few studies so far have investigated the causal relation between lPFC activation and task-switching performance by modulating lPFC activation. In these studies, the results of lPFC modulation were not conclusive or limited to the left lPFC. In the present study, we aimed to investigate the effect of non-invasive transcranial direct current stimulation [tDCS; anodal tDCS (1 mA, 20 min) vs. cathodal tDCS (1 mA, 20 min) vs. sham tDCS (1 mA, 30 s)] over the right inferior frontal junction on task-switching performance in a well-established task-switching paradigm. In response times, we found a significant effect of tDCS Condition (atDCS, ctDCS vs. sham) on task-switching costs, indicating the modulation of task-switching performance by tDCS. In addition, we found a task-unspecific tDCS Condition effect in the first experimental session, in which participants were least familiar with the task, indicating a general enhancement of task performance in both task repetitions and task-switching trials. Taken together, our study provides evidence that the right lPFC is involved in task switching as well as in general task processing. Further studies are needed to investigate whether these findings can be translated into clinically relevant improvement in older subjects or populations with executive function impairment.


2017 ◽  
Vol 24 (13) ◽  
pp. 1928-1943 ◽  
Author(s):  
Vahid Nejati ◽  
Mohammad Ali Salehinejad ◽  
Michael A. Nitsche ◽  
Asal Najian ◽  
Amir-Homayoun Javadi

Objective: This study examined effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) on major executive functions (EFs), including response inhibition, executive control, working memory (WM), and cognitive flexibility/task switching in ADHD. Method: ADHD children received (a) left anodal/right cathodal DLPFC tDCS and (b) sham stimulation in Experiment 1 and (a) left anodal DLPFC/right cathodal OFC tDCS, (b) left cathodal DLPFC/right anodal OFC tDCS, and (c) sham stimulation in Experiment 2. The current intensity was 1 mA for 15 min with a 72-hr interval between sessions. Participants underwent Go/No-Go task, N-back test, Wisconsin Card Sorting Test (WCST), and Stroop task after each tDCS condition. Results: Anodal left DLPFC tDCS most clearly affected executive control functions (e.g., WM, interference inhibition), while cathodal left DLPFC tDCS improved inhibitory control. Cognitive flexibility/task switching benefited from combined DLPFC-OFC, but not DLPFC stimulation alone. Conclusion: Task-specific stimulation protocols can improve EFs in ADHD.


2020 ◽  
Author(s):  
Christopher Turner ◽  
Catherine Jackson ◽  
Gemma Learmonth

AbstractStudies using transcranial direct current stimulation (tDCS) typically incorporate a fade-in, short-stimulation, fade-out sham (placebo) protocol, which is assumed to be indistinct from a 10-30min active protocol on the scalp. However, many studies report that participants can dissociate active stimulation from sham, even during low-intensity 1mA currents. We recently identified differences in the perception of an active (10min of 1mA) and a sham (20s of 1mA) protocol that lasted for 5 mins after the cessation of sham. In the present study we assessed whether delivery of a higher-intensity 2mA current would exacerbate these differences. Two protocols were delivered to 32 adults in a double-blinded, within-subjects design (active: 10min of 2mA, and sham: 20s of 2mA), with the anode over the left primary motor cortex and the cathode on the right forehead. Participants were asked “Is the stimulation on?” and “How sure are you?” at 30s intervals during and after stimulation. The differences between active and sham were more consistent and sustained during 2mA than during 1mA. We then quantified how well participants were able to track the presence and absence of stimulation (i.e. their sensitivity) during the experiment using cross-correlations. Current strength was a good classifier of sensitivity during active tDCS, but exhibited only moderate specificity during sham. The accuracy of the end-of-study guess was no better than chance at predicting sensitivity. Our results indicate that the traditional end-of-study guess poorly reflects the sensitivity of participants to stimulation, and may not be a valid method of assessing sham blinding.


Sign in / Sign up

Export Citation Format

Share Document