Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite

2001 ◽  
Vol 106 (B6) ◽  
pp. 11083-11099 ◽  
Author(s):  
H. Kawahata ◽  
M. Nohara ◽  
H. Ishizuka ◽  
S. Hasebe ◽  
H. Chiba
1984 ◽  
Vol 48 (348) ◽  
pp. 311-322 ◽  
Author(s):  
A. P. Dickin ◽  
C. M. B. Henderson ◽  
F. G. F. Gibb

Abstract The Dippin sill, which is emplaced into the Triassic sediments of SE Arran, is an alkaline basic sheet which displays pronounced hydrothermal alteration. The 40-m-thick sill has suffered pervasive contamination with radiogenic Sr, introduced from the Triassic sediments by hydrothermal fluids. Stable isotope measurements suggest that fluids were of meteoric origin, but were restricted to a small closed-system circulation. Initial 87Sr/86Sr ratios in the sill were raised from an original value of 0.7032 to a maximum of 0.7091, contamination being especially pronounced near the contacts at Dippin Head itself (localities 12 and 14) and in a drill core section through the sill above Dippin. Hydrothermal Sr was incorporated into an early-formed high-CaO, high-Sr analcime, which replaced unstable high-silica nepheline in interstitial patches. However, this high-CaO analcime, along with plagioclase, was later replaced by a low-CaO, low-Sr analcime, allowing Sr leaching from the margins of the sill. Hydrothermal fluids are thought to have migrated up to 1 km laterally, up the dip of the sill, mainly via tension joints forming in the cooling intrusion. Pooling of hot fluids at the upper end of the sill probably raised water/rock ratios in this region and allowed greater Sr contamination during mineralogical alteration. The undersaturated mineralogy of the sill accounts for its pervasive hydrothermal Sr contamination, which contrasts markedly with the relatively undisturbed Sr isotope compositions of Hebridean granites involved in hydrothermal systems.


2021 ◽  
pp. 104429
Author(s):  
Zhixin Zhao ◽  
David L. Leach ◽  
Junhao Wei ◽  
Shengnan Liang ◽  
Katharina Pfaff

2021 ◽  
Author(s):  
Filipa Luz ◽  
António Mateus ◽  
Ezequiel Ferreira ◽  
Colombo G. Tassinari ◽  
Jorge Figueiras

Abstract The boundary in the Iberian Pyrite Belt is a world-class metallogenic district developed at the Devonian-Carboniferous boundary the Iberian Variscides that currently has seven active mines: Neves Corvo (Cu-Zn-Sn) and Aljustrel (Cu-Zn) in Portugal, and Riotinto (Cu), Las Cruces (Cu), Aguas Teñidas (Cu-Zn-Pb), Sotiel-Coronada (Cu-Zn-Pb), and La Magdalena (Cu-Zn-Pb) in Spain. The Iberian Pyrite Belt massive sulfide ores are usually hosted in the lower sections of the volcano-sedimentary complex (late Famennian to late Visean), but they also occur in the uppermost levels of the phyllite-quartzite group at the Neves Corvo deposit, stratigraphically below the volcano-sedimentary complex. A Pb-Nd-Sr isotope dataset was obtained for 98 Iberian Pyrite Belt metapelite samples (from Givetian to upper Visean), representing several phyllite-quartzite group and volcano-sedimentary complex sections that include the footwall and hanging-wall domains of ore horizons at the Neves Corvo, Aljustrel, and Lousal mines. The combination of whole-rock Nd and Sr isotopes with Th/Sc ratios shows that the siliciclastic components of Iberian Pyrite Belt metapelites are derived from older quartz-feldspathic basement rocks (–11 ≤ εNdinitial(i) ≤ –8 and (87Sr/86Sr)i up to 0.727). The younger volcano-sedimentary complex metapelites (upper Tournaisian) often comprise volcanic-derived constituents with a juvenile isotopic signature, shifting the εNdi up to +0.2. The Pb isotope data confirm that the phyllite-quartzite group and volcano-sedimentary complex successions are crustal reservoirs for metals found in the deposits. In Neves Corvo, where there is more significant Sn- and Cu-rich mineralization, the higher (206Pb/204Pb)i and (207Pb/204Pb)i values displayed by phyllite-quartzite group and lower volcano-sedimentary complex metapelites (up to 15.66 and 18.33, respectively) suggest additional contributions to the metal budget from a deeper and more radiogenic source. The proximity to Iberian Pyrite Belt massive sulfide ore systems hosted in metapelite successions is observed when (207Pb/204Pb)i >15.60 and Fe2O3/TiO2 or (Cu+Zn+Pb)/Sc >10. These are important criteria that should be considered in geochemical exploration surveys designed for the Iberian Pyrite Belt.


2015 ◽  
Vol 258 ◽  
pp. 234-246 ◽  
Author(s):  
Hassan M. Helmy ◽  
Masako Yoshikawa ◽  
Tomoyuki Shibata ◽  
Shoji Arai ◽  
Hiroo Kagami

2021 ◽  
pp. 120689
Author(s):  
FranciscoE. Apen ◽  
Corey J. Wall ◽  
John M. Cottle ◽  
Mark D. Schmitz ◽  
Andrew R.C. Kylander-Clark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document