scholarly journals Comparison of travel time analysis and inverse modeling for soil water content determination with time domain reflectometry

2002 ◽  
Vol 38 (6) ◽  
pp. 13-1-13-8 ◽  
Author(s):  
J. A. Huisman ◽  
A. H. Weerts ◽  
T. J. Heimovaara ◽  
W. Bouten
2002 ◽  
Vol 6 (5) ◽  
pp. 949-955 ◽  
Author(s):  
M. A. Mojid

Abstract. Nine time-domain reflectometry (TDR) probes, 2 to 10 cm long, were evaluated by comparing their measurement accuracy of TDR-pulse travel time in a sand and sandy loam soil, and electrical conductivity in NaCl solutions. TDR probes <2.5 cm in length generated trough-haped TDR waveforms with rounded corners at the points of the pulse reflection from the probe ends. The sharpness of the pulse reflection on the waveforms increased with both the increasing probe length and soil-water content. The transition time for the propagation of TDR pulse at the probe entrance increased as the soil dried up. The increased transition time caused a rightward movement of the first peak of the waveform at the probe entrance. Because of such peak movement, TDR-support software algorithm determined travel path of TDR pulse through the probe that was smaller than the actual travel path. TDR-measured pulse travel time tTDR varied erratically with the predicted pulse travel time tg (from volumetric soil-water content) for the probes <2.5 cm in length. But, for all probes ³2.5 cm in length, tTDR varied linearly with tg and followed the 1:1 line. TDR could not measure tTDR <300 ps accurately. A minimum probe length Lmin and the lowest allowable soil-water content qmin that the probe can accurately measure govern this lowest pulse travel time tmin. The mean absolute deviation between tTDR and tg was 77 ps for the 2.3 cm long probe and 1.39 ps for all probes ≥2.5 cm in length. All probes ≥2.5 cm in length measured electrical conductivity of salt solutions sTDR that compared well with the electrical conductivity measured by a conductivity meter sm. The length of the probes did not exert any noticeable influence on the accuracy of electrical conductivity measurement. Keywords: TDR probe, pulse travel time, dielectric constant, electrical conductivity


2000 ◽  
Vol 80 (1) ◽  
pp. 3-11 ◽  
Author(s):  
D. L. Spittlehouse

Forest soils often contain many large coarse fragments making it difficult to insert probes to measure soil water content. The ability of time domain reflectometry (TDR) to give reliable measurements of water content in soil with up to 40% coarse fragments was evaluated at a site in the southern interior of British Columbia, Canada. A commercial time domain reflectometer was used with 0.3-, 0.5- and 0.75-m-long probes to measure soil water content of the profile and layers within the profile. A probe had a shorting diode at the surface and two 3-mm-diameter stainless steel rods inserted vertically, 30 mm apart, as the waveguide. Diverging rods or profile discontinuities resulted in erroneous readings that required a review of the recorded signals and recalculation the travel time. Soil physical and hydrologic soil properties were determined and the soil calibrated for TDR. An accuracy of ±0.02 m3m−3 was obtained with measurement of soil bulk density and minimizing probe and travel time errors. Variation in water content between probes reflected the variability in coarse fragment content; however, the ranking of the probes stayed constant with time and rates of change were similar between probes. One standard deviation on the measured change in the volume of water between measurement days for the 0 to 0.5 m depth was ±6 mm (n = 20), equivalent to 0.012 m3m−3. Measurements of water content of the layers had one standard deviation of 0.02 m3m−3. Key words: Time domain reflectometry, forest hydrology, soil water content, water balance


Soil Science ◽  
2010 ◽  
Vol 175 (10) ◽  
pp. 469-473 ◽  
Author(s):  
Zhaoqiang Ju ◽  
Xiaona Liu ◽  
Tusheng Ren ◽  
Chunsheng Hu

1998 ◽  
Vol 2 (1) ◽  
pp. 111-120 ◽  
Author(s):  
D. A. Robinson ◽  
C. M. K. Gardner ◽  
J. Evans ◽  
J. D. Cooper ◽  
M. G. Hodnett ◽  
...  

Abstract. Capacitance probes are a fast, safe and relatively inexpensive means of measuring the relative permittivity of soils, which can then be used to estimate soil water content. Initial experiments with capacitance probes used empirical calibrations between the frequency response of the instrument and soil water content. This has the disadvantage that the calibrations are instrument-dependent. A twofold calibration strategy is described in this paper; the instrument frequency is turned into relative permittivity (dielectric constant) which can then be calibrated against soil water content. This approach offers the advantages of making the second calibration, from soil permittivity to soil water content. instrument-independent and allows comparison with other dielectric methods, such as time domain reflectometry. A physically based model, used to calibrate capacitance probes in terms of relative permittivity (εr) is presented. The model, which was developed from circuit analysis, predicts, successfully, the frequency response of the instrument in liquids with different relative permittivities, using only measurements in air and water. lt was used successfully to calibrate 10 prototype surface capacitance insertion probes (SCIPS) and a depth capacitance probe. The findings demonstrate that the geometric properties of the instrument electrodes were an important parameter in the model, the value of which could be fixed through measurement. The relationship between apparent soil permittivity and volumetric water content has been the subject of much research in the last 30 years. Two lines of investigation have developed, time domain reflectometry (TDR) and capacitance. Both methods claim to measure relative permittivity and should therefore be comparable. This paper demonstrates that the IH capacitance probe overestimates relative permittivity as the ionic conductivity of the medium increases. Electrically conducting ionic solutions were used to test the magnitude of this effect on the determination of relative permittivity. The response was modelled so that the relative permittivity, independent of ionic conductivity, could be determined in solutions with an electrical conductivity of up to 0.25 S m-1. It was found that a solution EC of less than 0.05 S m-1 had little impact on the permittivity measurement.


Sign in / Sign up

Export Citation Format

Share Document