scholarly journals The mixed layer depth in the North Pacific as detected by the Argo floats

2004 ◽  
Vol 31 (11) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yuko Ohno ◽  
Taiyo Kobayashi ◽  
Naoto Iwasaka ◽  
Toshio Suga
2011 ◽  
Vol 68 (6) ◽  
pp. 996-1007 ◽  
Author(s):  
Chan Joo Jang ◽  
Jisoo Park ◽  
Taewook Park ◽  
Sinjae Yoo

Abstract Jang, C. J., Park, J., Park, T., and Yoo, S. 2011. Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. – ICES Journal of Marine Science, 68: 996–1007. This study investigates changes in the mixed layer depth (MLD) in the North Pacific Ocean in response to global warming and their impact on primary production by comparing outputs from 11 models of the coupled model intercomparison projects phase 3. The MLD in the 21st century decreases in most regions of the North Pacific, whereas the spatial pattern of the MLD is nearly unchanged. The overall shoaling results in part from intensified upper-ocean stratification caused by both surface warming and freshening. A significant MLD decrease (>30 m) is found in the Kuroshio extension (KE), which is predominantly driven by reduced surface cooling, caused by weakening of wind. Associated with the mixed layer shoaling in the KE, the primary production component resulting from seasonal vertical mixing will be reduced by 10.7–40.3% (ranges of medians from 11 models) via decreased nitrate fluxes from below it. Spring blooms in most models are projected to initiate earlier in the KE by 0–13 d (ranges of medians from 11 models). Despite the overall trends, the magnitude of changes in primary production and timing of spring blooms are quite different depending on models and latitudes.


2009 ◽  
Vol 65 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yuko Ohno ◽  
Naoto Iwasaka ◽  
Fumiaki Kobashi ◽  
Yoshiko Sato

2015 ◽  
Vol 28 (23) ◽  
pp. 9451-9458 ◽  
Author(s):  
Changlin Chen ◽  
Guihua Wang

Abstract The annual cycle of sea surface temperature (SST) in the North Pacific Ocean is examined in terms of its response to global warming based on climate model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). As the global ocean warms up, the SST in the North Pacific generally tends to increase and the warming is greater in summer than in winter, leading to a significant intensification of SST annual cycle. The mixed layer temperature equation is used to examine the mechanism of this intensification. Results show that the decrease of mixed layer depth (MLD) in summer is the main reason behind the intensification of SST annual cycle. Because the MLD in summer is much shallower than that in winter, the incoming net heat flux is trapped in a thinner surface layer in summer, causing a warmer summer SST and the amplification of SST annual cycle. The change of the SST annual cycle in the North Pacific may have profound ecological impacts.


Author(s):  
Sayaka Yasunaka ◽  
Humio Mitsudera ◽  
Frank Whitney ◽  
Shin-ichiro Nakaoka

AbstractA compilation of surface water nutrient (phosphate, nitrate, and silicate) and partial pressure of CO2 (pCO2) observations from 1961 to 2016 reveals seasonal and interannual variability in the North Pacific. Nutrients and calculated dissolved inorganic carbon (DIC) reach maximum concentrations in March and minimum in August. Nutrient and DIC variability is in-phase (anti-phase) with changes in the mixed layer depth (sea surface temperature) north of 30 °N, and it is anti-phase (in-phase) with changes in Chl-a north of 40 °N (in 30 °N–40 °N). Seasonal drawdown of nutrients and DIC is larger toward the northwest and shows a local maximum in the boundary region between the subarctic and subtropics. Stoichiometric ratios of seasonal drawdown show that, compared to nitrate, silicate drawdown is large in the northwestern subarctic including the Bering and Okhotsk seas, and drawdown of carbon is larger toward the south. Net community production in mixed layer from March to July is estimated to be more than 6 gC/m2/mo in the boundary region between the subarctic and subtropics, the western subarctic, the Gulf of Alaska, and the Bering Sea. Nutrient and DIC concentrations vary with the Pacific Decadal Oscillation and the North Pacific Gyre Oscillation which cause changes in horizontal advection and vertical mixing. The DIC trend is positive in all analysis area and large in the western subtropics (> 1.0 μmol/l/yr). Averaged over the analysis area, it is increasing by 0.77 ± 0.03 μmol/l/yr (0.75 ± 0.02 μmol/kg/yr).


2006 ◽  
Vol 36 (7) ◽  
pp. 1365-1380 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen

Abstract In situ temperature and altimetrically derived sea surface height data are used to investigate the low-frequency variations in the formation of the North Pacific Ocean Subtropical Mode Water (STMW) over the past 12 yr. Inside the Kuroshio Extension (KE) recirculation gyre where STMW forms, the dominant signal is characterized by a gradual thinning in the late winter mixed layer depth and in the 16°–18°C thermostad layer from 1993 to 1999 and a subsequent steady thickening of these features after 2000. This same decadal signal is also seen in the low-potential-vorticity (PV) STMW layer in the interior subtropical gyre south of the recirculation gyre. By analyzing the air–sea flux data from the NCEP–NCAR reanalysis project, little correlation is found between the decadal STMW signal and the year-to-year changes in the cumulative wintertime surface cooling. In contrast, the decadal signal is found to be closely related to variability in the dynamic state of the KE system. Specifically, STMW formation is reduced when the KE path is in a variable state, during which time high regional eddy variability infuses high-PV KE water into the recirculation gyre, increasing the upper-ocean stratification and hindering the development of a deep winter mixed layer. A stable KE path, on the other hand, favors the maintenance of a weak stratification, leading to a deep winter mixed layer and formation of a thick STMW layer. The relative importance of the surface air–sea flux forcing versus the preconditioning stratification in controlling the variations in the late winter mixed layer depth is quantified using both a simple upper-ocean heat conservation model and a bulk mixed layer model. The majority of the variance (∼80%) is found to be due to the stratification changes controlled by the dynamic state of the KE system.


Abstract Recent evidence shows that the North Pacific subtropical gyre, the Kuroshio Extension (KE) and Oyashio Extension (OE) fronts have moved poleward in the past few decades. However, changes of the North Pacific Subtropical Fronts (STFs), anchored by the North Pacific subtropical countercurrent in the southern subtropical gyre, remain to be quantified. By synthesizing observations, reanalysis, and eddy-resolving ocean hindcasts, we show that the STFs, especially their eastern part, weakened (20%±5%) and moved poleward (1.6°±0.4°) from 1980 to 2018. Changes of the STFs are modified by mode waters to the north. We find that the central mode water (CMW) (180°-160°W) shows most significant weakening (18%±7%) and poleward shifting (2.4°±0.9°) trends, while the eastern part of the subtropical mode water (STMW) (160°E-180°) has similar but moderate changes (10% ± 8%; 0.9°±0.4°). Trends of the western part of the STMW (140°E-160°E) are not evident. The weakening and poleward shifting of mode waters and STFs are enhanced to the east and are mainly associated with changes of the northern deep mixed layers and outcrop lines—which have a growing northward shift as they elongate to the east. The eastern deep mixed layer shows the largest shallowing trend, where the subduction rate also decreases the most. The mixed layer and outcrop line changes are strongly coupled with the northward migration of the North Pacific subtropical gyre and the KE/OE jets as a result of the poleward expanded Hadley cell, indicating that the KE/OE fronts, mode waters, and STFs change as a whole system.


Sign in / Sign up

Export Citation Format

Share Document