Distribution of dissolved organic matter in the eastern Bering Sea, Chukchi Sea (Barrow Canyon) and Beaufort Sea

2004 ◽  
Vol 31 (24) ◽  
Author(s):  
Kyung-Hoon Shin
Harmful Algae ◽  
2017 ◽  
Vol 63 ◽  
pp. 13-22 ◽  
Author(s):  
Masafumi Natsuike ◽  
Hiroshi Oikawa ◽  
Kohei Matsuno ◽  
Atsushi Yamaguchi ◽  
Ichiro Imai

2017 ◽  
Vol 144 ◽  
pp. 104-111 ◽  
Author(s):  
Michael Gonsior ◽  
Jenna Luek ◽  
Philippe Schmitt-Kopplin ◽  
Jacqueline M. Grebmeier ◽  
Lee W. Cooper

2012 ◽  
Vol 9 (7) ◽  
pp. 9571-9601 ◽  
Author(s):  
Y. Shen ◽  
C. G. Fichot ◽  
R. Benner

Abstract. Dissolved organic carbon (DOC) and total dissolved amino acids (TDAA) were measured in high (Chukchi Sea) and low (Beaufort Sea) productivity regions of the Western Arctic Ocean to investigate the composition and bioavailability of dissolved organic matter (DOM). Concentrations and DOC-normalized yields of TDAA in Chukchi surface waters were relatively high, indicating an accumulation of bioavailable DOM. High yields of TDAA were also observed in the upper halocline of slope and basin waters, indicating off-shelf transport of bioavailable DOM from the Chukchi Sea. In contrast, concentrations and yields of TDAA in Beaufort surface waters were relatively low, indicting DOM was of limited bioavailability. Yields of TDAA in the upper halocline of slope and basin waters were also low, suggesting the Beaufort is not a major source of bioavailable DOM to slope and basin waters. In shelf waters of both systems, elevated concentrations and yields of TDAA were often observed in waters with higher chlorophyll concentrations and productivity. Surface concentrations of DOC were similar (p > 0.05) in the two systems despite the contrasting productivity, but concentrations and yields of TDAA were significantly higher (p < 0.0001) in the Chukchi than in the Beaufort. Unlike bulk DOC, TDAA concentrations and yields reflect ecosystem productivity in the Western Arctic. The occurrence of elevated bioavailable DOM concentrations in the Chukchi implies an uncoupling between the biological production and utilization of DOM and has important implications for sustaining heterotrophic microbial growth and diversity in oligotrophic waters of the Central Arctic basins.


2016 ◽  
Vol 121 (8) ◽  
pp. 6403-6417 ◽  
Author(s):  
Hui Lin ◽  
Min Chen ◽  
Jian Zeng ◽  
Qi Li ◽  
Renming Jia ◽  
...  

2012 ◽  
Vol 9 (3) ◽  
pp. 925-940 ◽  
Author(s):  
A. Matsuoka ◽  
A. Bricaud ◽  
R. Benner ◽  
J. Para ◽  
R. Sempéré ◽  
...  

Abstract. Light absorption by colored dissolved organic matter (CDOM) [aCDOM(λ)] plays an important role in the heat budget of the Arctic Ocean, contributing to the recent decline in sea ice, as well as in biogeochemical processes. We investigated aCDOM(λ) in the Southern Beaufort Sea where a significant amount of CDOM is delivered by the Mackenzie River. In the surface layer, aCDOM(440) showed a strong and negative correlation with salinity, indicating strong river influence and conservative transport in the river plume. Below the mixed layer, a weak but positive correlation between aCDOM(440) and salinity was observed above the upper halocline, resulting from the effect of removal of CDOM due to brine rejection and lateral intrusion of Pacific summer waters into these layers. In contrast, the relationship was negative in the upper and the lower haloclines, suggesting these waters originated from Arctic coastal waters. DOC concentrations in the surface layer were strongly correlated with aCDOM(440) (r2 = 0.97), suggesting that this value can be estimated in this area, using aCDOM(440) that is retrieved using satellite ocean color data. Implications for estimation of DOC concentrations in surface waters using ocean color remote sensing are discussed.


Sign in / Sign up

Export Citation Format

Share Document