scholarly journals Study of the proton arc spreading effect on primary ionization rates

Author(s):  
Xiaohua Fang
2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


1962 ◽  
Vol 80 (4) ◽  
pp. 898-908 ◽  
Author(s):  
D Kenneth Davies ◽  
F Llewellyn Jones ◽  
C G Morgan

1990 ◽  
Vol 57 (3) ◽  
pp. 249-251 ◽  
Author(s):  
H. Kuwatsuka ◽  
T. Mikawa ◽  
S. Miura ◽  
N. Yasuoka ◽  
Y. Kito ◽  
...  

2017 ◽  
Vol 31 (29) ◽  
pp. 1750215 ◽  
Author(s):  
Feras Afaneh ◽  
Horst Schmidt-Böcking

In this paper, we study single and double ionizations of N2O in a short elliptically polarized 800 nm laser pulse using the COLTRIMS technique. The molecular-frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionizations of N2O molecules are reported for the single ionization dissociative channel NO[Formula: see text] + N and the double ionization dissociative channel NO[Formula: see text] + N[Formula: see text]. The ionizations of multiple orbitals for the two studied dissociative channels were identified via studying the orientation dependent ionization rates for their KERs. The results show that the shape of the ionizing orbitals governs the single and double ionization processes of N2O.


1964 ◽  
Vol 7 (9) ◽  
pp. 1554 ◽  
Author(s):  
Kenneth E. Harwell ◽  
Robert G. Jahn
Keyword(s):  

1981 ◽  
Vol 23 (4B) ◽  
pp. 743-753 ◽  
Author(s):  
M Basile ◽  
J Berbiers ◽  
G Cara Romeo ◽  
L Cifarelli ◽  
A Contin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document