ionization coefficient
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Haoxuan Wang ◽  
Russell S. Brayfield ◽  
Ayyaswamy Venkattraman ◽  
Amanda M. Loveless ◽  
Cameron J. Buerke ◽  
...  

Author(s):  
Rasmus Talviste ◽  
Peeter Paris ◽  
Juri Raud ◽  
Toomas Plank ◽  
Kalev Erme ◽  
...  

2021 ◽  
Vol 36 (1) ◽  
pp. 420-432
Author(s):  
Mohammad M. Othman ◽  
Sherzad A. Taha ◽  
Saeed O. Ibrahim

In this study, the electron energy distribution function EEDF, the electron swarm parameters, the effective ionization coefficients, and the critical field strength (dielectric strength) in binary He-H2 gas mixture which used as cryogenic for high-temperature superconducting power application, are evaluated by using two-term approximation of the Boltzmann equation over the range of E/N ( the electric field to gas density) from 1 to 100 Td ( 1 Td=10-17 Vcm2) at temperature 77 K and pressure 2MPa, taking into account elastic and inelastic cross-section. Using the calculated EEDF, the electron swarm parameters (electron drift velocity, mean electron energy, diffusion coefficient, electron mobility, ionization and attachment coefficient) are calculated. At low reduced electric field E/N, the EEDF close Maxwellian distribution, at high E/N, due to vibrational excitation of H2 the calculated distribution function is non-Maxwellian. Besides, in the He-H2 mixture, it is found that increasing small amount of H2 enhances to shift the tail of EEDF to the lower energy region, the reduced ionization coefficient α/N. reduced effective ionization coefficient (α-η)/N) decreases, while, reduced attachment coefficient η/N, reduced critical electric field strength (E/N)crt. and critical electric field Ecrt. Increases, because of hydrogen’s large ionization cross-sections. The dielectric strength of 5% H2 in mixture is in good agreement with experimental values, it is found that dielectric strength depend on pressure and temperature. The electron swarm parameters in pure gaseous helium (He) and hydrogen (H2), in satisfying agreement with previous available theoretical and experimental values. The validity of the calculated values has been confirmed by two-term approximation of the Boltzmann equation analysis.


2021 ◽  
Vol 1795 (1) ◽  
pp. 012033
Author(s):  
Ammar M Jasim ◽  
Jabbar H Khlaief ◽  
Rafid S Zamel

Author(s):  
В.Ф. Банная ◽  
Е.В. Никитина

The results of an experimental study on charge carriers heating by an electric field (E) in pure Ge in a quantum magnetic field (H) at (E⊥H) at low temperatures (T=4,2;1,8 K) under thermal excitation are considered. It is shown that the dependence of E and H thermal ionization coefficient affects the average carrier lifetime under these conditions. The obtained results are in qualitative agreement with the theory of cascade capture of carriers on isolated centers in crossed electric and magnetic fields.


2019 ◽  
Vol 9 (18) ◽  
pp. 3686 ◽  
Author(s):  
Zhaoyu Qin ◽  
Yunxiang Long ◽  
Zhenyu Shen ◽  
Cheng Chen ◽  
Liping Guo ◽  
...  

The normalized Townsend first ionization coefficient α/N and normalized attachment coefficient η/N in pure C4F7N were measured by using the steady-state Townsend (SST) method for a range of reduced electric fields E/N from 750 to 1150 Td at room temperature (20 °C). Meanwhile, the effective ionization coefficients are obtained. All SST experimental results show good agreement with pulsed Townsend (PT) experiment results. Comparisons of the critical electric fields of C4F7N with SF6 and other alternative gases such as c-C4F8 and CF3I indicate that C4F7N has a better insulation performance with a much higher normalized critical electric field at 959.19 Td.


Author(s):  
N. Crossette ◽  
T. G. Jenkins ◽  
J. R. Cary ◽  
J. Leddy ◽  
D. N. Smithe

Sign in / Sign up

Export Citation Format

Share Document