scholarly journals High supersaturation and modes of ice nucleation in thin tropopause cirrus: Simulation of the 13 July 2002 Cirrus Regional Study of Tropical Anvils and Cirrus Layers case

Author(s):  
Vitaly I. Khvorostyanov ◽  
Hugh Morrison ◽  
Judith A. Curry ◽  
Darrel Baumgardner ◽  
Paul Lawson
2005 ◽  
Vol 62 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Andrew J. Heymsfield ◽  
Larry M. Miloshevich ◽  
Carl Schmitt ◽  
Aaron Bansemer ◽  
Cynthia Twohy ◽  
...  

Abstract This study uses a unique set of microphysical measurements obtained in a vigorous, convective updraft core at temperatures between −33° and −36°C, together with a microphysical model, to investigate the role of homogeneous ice nucleation in deep tropical convection and how it influences the microphysical properties of the associated cirrus anvils. The core and anvil formed along a sea-breeze front during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL–FACE). The updraft core contained two distinct regions as traversed horizontally: the upwind portion of the core contained droplets of diameter 10–20 μm in concentrations of around 100 cm−3 with updraft speeds of 5–10 m s−1; the downwind portion of the core was glaciated with high concentrations of small ice particles and stronger updrafts of 10–20 m s−1. Throughout the core, rimed particles up to 0.6-cm diameter were observed. The anvil contained high concentrations of both small particles and large aggregates. Thermodynamic analysis suggests that the air sampled in the updraft core was mixed with air from higher altitudes that descended along the upwind edge of the cloud in an evaporatively driven downdraft, introducing free-tropospheric cloud condensation nuclei into the updraft below the aircraft sampling height. Farther downwind in the glaciated portion of the core, the entrained air contained high concentrations of ice particles that inhibit droplet formation and homogeneous nucleation. Calculations of droplet and ice particle growth and homogeneous ice nucleation are used to investigate the influence of large ice particles lofted in updrafts from lower levels in this and previously studied tropical ice clouds on the homogeneous nucleation process. The preexisting large ice particles act to suppress homogeneous nucleation through competition via diffusional and accretional growth, mainly when the updrafts are < 5 m s−1. In deep convective updrafts > 5–10 m s−1, the anvil is the depository for the small, radiatively important ice particles (homogeneously nucleated) and the large ice particles from below (heterogeneously or secondarily produced, or recycled).


2020 ◽  
Vol 47 (10) ◽  
Author(s):  
Prasanth Prabhakaran ◽  
Gregory Kinney ◽  
Will Cantrell ◽  
Raymond A. Shaw ◽  
Eberhard Bodenschatz

2014 ◽  
Vol 13 (5) ◽  
pp. 1241-1249
Author(s):  
Hong Li ◽  
Juanrui Lou ◽  
Tingting Zhang

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 351
Author(s):  
Bernardo Martin-Gorriz ◽  
Victoriano Martínez-Alvarez ◽  
José Francisco Maestre-Valero ◽  
Belén Gallego-Elvira

Curbing greenhouse gas (GHG) emissions to combat climate change is a major global challenge. Although irrigated agriculture consumes considerable energy that generates GHG emissions, the biomass produced also represents an important CO2 sink, which can counterbalance the emissions. The source of the water supply considerably influences the irrigation energy consumption and, consequently, the resulting carbon footprint. This study evaluates the potential impact on the carbon footprint of partially and fully replacing the conventional supply from Tagus–Segura water transfer (TSWT) with desalinated seawater (DSW) in the irrigation districts of the Segura River basin (south-eastern Spain). The results provide evidence that the crop GHG emissions depend largely on the water source and, consequently, its carbon footprint. In this sense, in the hypothetical scenario of the TSWT being completely replaced with DSW, GHG emissions may increase by up to 50% and the carbon balance could be reduced by 41%. However, even in this unfavourable situation, irrigated agriculture in the study area could still act as a CO2 sink with a negative total and specific carbon balance of −707,276 t CO2/year and −8.10 t CO2/ha-year, respectively. This study provides significant policy implications for understanding the water–energy–food nexus in water-scarce regions.


Author(s):  
Philipp Baloh ◽  
Regina Hanlon ◽  
Christopher Anderson ◽  
Eoin Dolan ◽  
Gernot Pacholik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document