ice nucleation activity
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 55)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
William D Fahy ◽  
Elena C Maters ◽  
Rona Giese-Miranda ◽  
Michael P Adams ◽  
Leif G Jahn ◽  
...  

Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is...


2021 ◽  
Vol 10 (47) ◽  
Author(s):  
Shu Yang ◽  
Boris A. Vinatzer

Mortierella alpina is a filamentous fungus commonly associated with soil and is one of very few fungal species known to include strains with ice nucleation activity. Here, we report the draft genome sequence of the ice nucleation-active M. alpina strain LL118, isolated from aspen leaf litter collected in Alberta, Canada.


2021 ◽  
Author(s):  
Kristian Klumpp ◽  
Claudia Marcolli ◽  
Thomas Peter

Abstract. Potassium-feldspars (K-feldspars), such as microcline, are considered key dust minerals inciting ice nucleation in mixed phase clouds. Besides the high ice nucleation activity of microcline, recent studies also revealed a high sensi-tivity of microcline towards interaction with solutes on its surface. Here, we investigate the effect of organic and bio-organic substances on the ice nucleation activity of microcline, with the aim to better understand the underlying sur-face interactions. We performed immersion freezing experiments with microcline in solutions of three carboxylic acids, five amino acids and two polyols to represent these compound classes. By means of a differential scanning calorimeter we investigated the freezing of emulsified droplets of microcline suspended in various solutions. Depend-ing on the type of solute, different effects were observed. In the case of carboxylic acids (acetic, oxalic and citric acid), the measured heterogeneous onset temperatures, Thet, showed no significant deviation from the behavior pre-dicted by the water activity criterion, Thet(aw) = Tmelt(aw+Δaw), which relates Thet with the melting point temperature Tmelt via a constant water activity offset Δaw. While this behavior could be interpreted as a lack of interaction of the solute molecules with the surface, the carboxylic acids caused the fraction of heterogeneously frozen water, Fhet(aw), to decrease by up to 40 % with increasing solute concentrations. In combination, unaltered Thet(aw) and reduced Fhet(aw) suggest that active sites were largely deactivated by the acid molecules, but amongst those remaining active are also the best sites with the highest Thet. A deviation from this behavior is citric acid, which showed not only a de-crease in Fhet, but also a decrease in Thet of up to 4 K for water activities below 0.99, pointing to a depletion of the best active sites by interactions with the citrate ions. When neutralized solutions of the acids were used instead, the de-crease in Fhet became even more pronounced. The slope of Thet(aw) was different for each of the neutralized acid solu-tions. In the case of amino acid solutions, we found a decrease in Thet (up to 10 K), significantly below the Δaw-criterion, as well as a reduction in Fhet (up to 60 %). Finally, in case of the investigated polyols, no significant devia-tion of Thet from the Δaw-criterion was observed, and no significant deviation of Fhet in comparison to a pure water suspension was found. Furthermore, we measured the effects of aging on the ice nucleation activity in experiments with microcline suspended in solutions for up to seven days, and tested the reversibility of the interaction with the solutes after aging for 10 days. For citric acid, an ongoing irreversible degradation of the ice nucleation activity was observed, whereas the amino acids showed completely reversible effects. In summary, our experiments demonstrate a remarkable sensitivity of microcline ice nucleation activity to surface interactions with various solutes, underscoring the importance of the history of such particles from source to frozen cloud droplet in the atmosphere.


Author(s):  
Masaya Ishikawa ◽  
Hiroyuki Ide ◽  
Tetsuya Tsujii ◽  
Timothy Stait-Gardner ◽  
Hikaru Kubo ◽  
...  

To explore diversity in cold hardiness mechanisms, high resolution magnetic resonance imaging (MRI) was used to visualize freezing behaviors in wintering flower buds of Daphne kamtschatica var. jezoensis, which have no bud scales surrounding well-developed florets. MRI images showed that anthers remained stably supercooled to -14 ∼ -21°C or lower whilst most other tissues froze by -7°C. Freezing of some anthers detected in MRI images at ∼ -21°C corresponded with numerous low temperature exotherms and also with the “all-or-nothing” type of anther injuries. In ovules/pistils, only embryo sacs remained supercooled at -7°C or lower, but slowly dehydrated during further cooling. Cryomicroscopic observation revealed ice formation in the cavities of calyx tubes and pistils but detected no ice in embryo sacs or in anthers. The distribution of ice nucleation activity in floral tissues corroborated the tissue freezing behaviors. Filaments likely work as the ice blocking barrier that prevents ice intrusion from extracellularly frozen calyx tubes to connecting unfrozen anthers. Unique freezing behaviors were demonstrated in Daphne flower buds: preferential freezing avoidance in male and female gametophytes and their surrounding tissues (by stable supercooling in anthers and by supercooling with slow dehydration in embryo sacs) whilst the remaining tissues tolerate extracellular freezing.


2021 ◽  
Vol 21 (15) ◽  
pp. 11801-11814
Author(s):  
Alexei A. Kiselev ◽  
Alice Keinert ◽  
Tilia Gaedeke ◽  
Thomas Leisner ◽  
Christoph Sutter ◽  
...  

Abstract. Feldspar is an important constituent of airborne mineral dust. Some alkali feldspars exhibit particularly high ice nucleation (IN) activity. This has been related to structural similarities of the ice (101‾0) prism planes and the (100) planes of alkali feldspar. Here the effect of generating feldspar surfaces with close to (100) orientation by means of chemically induced fracturing on the IN activity of alkali feldspar was investigated experimentally. To this end, gem-quality K-rich alkali feldspar was shifted towards more Na-rich compositions by cation exchange with an NaCl–KCl salt melt at 850 ∘C. By this procedure, a system of parallel cracks with an orientation close to the (100) plane of the feldspar was induced. Droplet-freezing assay experiments performed on grain mounts of the cation-exchanged alkali feldspars revealed an increase in the overall density of ice-nucleating active site (INAS) density with respect to the untreated feldspar. In addition, annealing at 550 ∘C subsequent to primary cation exchange further enhanced the INAS density and led to IN activity at exceptionally high temperatures. Although very efficient in experiment, fracturing by cation exchange with an alkali halide salt is unlikely to be of relevance in the conditioning of alkali feldspars in nature. However, parting planes with similar orientation as the chemically induced cracks may be generated in lamellar microstructures resulting from the exsolution of initially homogeneous alkali feldspar, a widespread phenomenon in natural alkali feldspar known as perthite formation. Perthitic alkali feldspars indeed show the highest IN activity. We tentatively ascribe this phenomenon to the preferential exposure of feldspar crystal surfaces oriented sub-parallel to (100).


Author(s):  
Philipp Baloh ◽  
Regina Hanlon ◽  
Christopher Anderson ◽  
Eoin Dolan ◽  
Gernot Pacholik ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Shu Yang ◽  
Jeffrey Coleman ◽  
Boris Vinatzer

Fusarium avenaceum is a filamentous fungus commonly associated with plants and soil. It is a causal agent of Fusarium head blight (FHB) on maize and small-grain cereals, blights on other plant species, and is one of the very few fungal species known to have ice nucleation activity, i.e., it catalyzes ice formation. Here we report the draft genome of the ice nucleation-active F. avenaceum strain F156N33 isolated from the atmosphere above Virginia. The genome assembly is 41,175,306 bp long, consists of 214 contigs, and is predicted to encode 11,233 proteins, which were annotated using RNA-seq data obtained from the same strain.


2021 ◽  
Vol 18 (12) ◽  
pp. 3751-3762
Author(s):  
Jessie M. Creamean ◽  
Julio E. Ceniceros ◽  
Lilyanna Newman ◽  
Allyson D. Pace ◽  
Thomas C. J. Hill ◽  
...  

Abstract. Aerosols play a crucial role in cloud formation. Biologically derived materials from bacteria, fungi, pollen, lichen, viruses, algae, and diatoms can serve as ice nucleating particles (INPs), some of which initiate glaciation in clouds at relatively warm freezing temperatures. However, determining the magnitude of the interactions between clouds and biologically derived INPs remains a significant challenge due to the diversity and complexity of bioaerosols and limited observations of such aerosols facilitating cloud ice formation. Additionally, microorganisms from the domain Archaea have, to date, not been evaluated as INPs. Here, we present the first results reporting the ice nucleation activity of four species in the class Haloarchaea. Intact cells of Halococcus morrhuae and Haloferax sulfurifontis demonstrated the ability to induce immersion freezing at temperatures up to −18 ∘C, while lysed cells of Haloquadratum walsbyi and Natronomonas pharaonis were unable to serve as immersion INPs. Exposure to heat and peroxide digestion indicated that the INPs of intact cells were driven by organic (H. morrhuae and H. sulfurifontis) and possibly also heat labile materials (H. sulfurifontis only). While halophiles are prominent in hypersaline environments such as the Great Salt Lake and the Dead Sea, other members of the Archaea, such as methanogens and thermophiles, are prevalent in anoxic systems in seawater, sea ice, marine sediments, glacial ice, permafrost, and other cold niches. Archaeal extremophiles are both diverse and highly abundant. Thus, it is important to assess their ability to serve as INPs as it may lead to an improved understanding of biological impacts on clouds.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 779
Author(s):  
Teresa M. Seifried ◽  
Paul Bieber ◽  
Anna T. Kunert ◽  
David G. Schmale ◽  
Karin Whitmore ◽  
...  

In alpine environments, many plants, bacteria, and fungi contain ice nuclei (IN) that control freezing events, providing survival benefits. Once airborne, IN could trigger ice nucleation in cloud droplets, influencing the radiation budget and the hydrological cycle. To estimate the atmospheric relevance of alpine IN, investigations near emission sources are inevitable. In this study, we collected 14 aerosol samples over three days in August 2019 at a single site in the Austrian Alps, close to a forest of silver birches, which are known to release IN from their surface. Samples were taken during and after rainfall, as possible trigger of aerosol emission by an impactor and impinger at the ground level. In addition, we collected aerosol samples above the canopy using a rotary wing drone. Samples were analyzed for ice nucleation activity, and bioaerosols were characterized based on morphology and auto-fluorescence using microscopic techniques. We found high concentrations of IN below the canopy, with a freezing behavior similar to birch extracts. Sampled particles showed auto-fluorescent characteristics and the morphology strongly suggested the presence of cellular material. Moreover, some particles appeared to be coated with an organic film. To our knowledge, this is the first investigation of aerosol emission sources in alpine vegetation with a focus on birches.


Sign in / Sign up

Export Citation Format

Share Document