scholarly journals Total gaseous mercury emissions from soil in Guiyang, Guizhou, China

2005 ◽  
Vol 110 (D14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xinbin Feng ◽  
Shaofeng Wang ◽  
Guangle Qiu ◽  
Yamin Hou ◽  
Shunlin Tang
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 387
Author(s):  
Linghui Meng ◽  
Charles T. Driscoll ◽  
Mario Montesdeoca ◽  
Huiting Mao

In order to obtain a better perspective of the impacts of brownfields on the land–atmosphere exchange of mercury in urban areas, total gaseous mercury (TGM) was measured at two heights (1.8 m and 42.7 m) prior to 2011–2012 and after 2015–2016 for the remediation of a brownfield and installation of a parking lot adjacent to the Syracuse Center of Excellence in Syracuse, NY, USA. Prior to brownfield remediation, the annual average TGM concentrations were 1.6 ± 0.6 and 1.4 ± 0.4 ng · m − 3 at the ground and upper heights, respectively. After brownfield remediation, the annual average TGM concentrations decreased by 32% and 22% at the ground and the upper height, respectively. Mercury soil flux measurements during summer after remediation showed net TGM deposition of 1.7 ng · m − 2 · day − 1 suggesting that the site transitioned from a mercury source to a net mercury sink. Measurements from the Atmospheric Mercury Network (AMNet) indicate that there was no regional decrease in TGM concentrations during the study period. This study demonstrates that evasion from mercury-contaminated soil significantly increased local TGM concentrations, which was subsequently mitigated after soil restoration. Considering the large number of brownfields, they may be an important source of mercury emissions source to local urban ecosystems and warrant future study at additional locations.


2006 ◽  
Vol 25 (S1) ◽  
pp. 243-244
Author(s):  
Xinbin Feng ◽  
Shaofeng Wang ◽  
Guangle Qiu ◽  
Yamin Hou ◽  
Shunlin Tang

2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


2017 ◽  
Vol 16 (1) ◽  
pp. 46-60 ◽  
Author(s):  
Nicolas Marusczak ◽  
Sabine Castelle ◽  
Benoist de Vogüé ◽  
Joël Knoery ◽  
Daniel Cossa

Sign in / Sign up

Export Citation Format

Share Document