Characteristics of the Ross Ice Shelf air stream as depicted in Antarctic Mesoscale Prediction System simulations

2006 ◽  
Vol 111 (D12) ◽  
Author(s):  
Thomas R. Parish ◽  
John J. Cassano ◽  
Mark W. Seefeldt
2017 ◽  
Vol 34 (5) ◽  
pp. 587-598
Author(s):  
Yihui Liu ◽  
Yetang Wang ◽  
Minghu Ding ◽  
Weijun Sun ◽  
Tong Zhang ◽  
...  

2017 ◽  
Vol 32 (1) ◽  
pp. 223-242 ◽  
Author(s):  
Melissa A. Nigro ◽  
John J. Cassano ◽  
Jonathan Wille ◽  
David H. Bromwich ◽  
Matthew A. Lazzara

Abstract Accurate representation of the stability of the surface layer in numerical weather prediction models is important because of the impact it has on forecasts of surface energy, moisture, and momentum fluxes. It also impacts boundary layer processes such as the generation of turbulence, the creation of near-surface flows, and fog formation. This paper uses observations from a 30-m automatic weather station on the Ross Ice Shelf, Antarctica, to evaluate the near-surface layer in the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system used for forecasting in Antarctica. The method of self-organizing maps (SOM) is used to identify characteristic potential temperature anomaly profiles observed at the 30-m tower. The SOM-identified profiles are then used to evaluate the performance of AMPS as a function of atmospheric stability. The results indicate AMPS underpredicts the frequency of near-neutral profiles and instead overpredicts the frequency of weakly unstable and weak to moderately stable profiles. AMPS does not forecast the strongest statically stable patterns observed by Tall Tower, but in the median, the AMPS forecasts are more statically stable across all wind speeds, indicating a possible mechanical mixing error or a negative radiation bias. The SOM analysis identifies a negative radiation bias under near-neutral to weakly stable conditions, causing an overrepresentation of the static stability in AMPS. AMPS has a positive wind speed bias in moderate to strongly stable conditions, which generates too much mechanical mixing and an underrepresentation of the static stability. Model errors increase with increasing atmospheric stability.


2020 ◽  
Author(s):  
Adrian McDonald

<p>This study investigates the impacts of strong wind events on the sea ice concentration within polynya regions, with a focus on the Ross Sea Polynya (RSP). In particular, this work quantifies the sensitivity of sea ice concentrations to surface winds and whether there are threshold wind speeds required for regions of the polynya  to open up with subsequent impacts on air-sea heat fluxes. To analyse these processes, we examine version 3.1 of the Bootstrap sea ice concentration (SIC) satellite data set derived from SSM/I brightness temperatures and how they are connected to the surface winds from the ERA5 reanalysis over the period 1979 to 2018. While we examine these relationships around the entire Antarctic continent, we focus on the RSP and low-level jets in the Ross Sea. In particular, we examine how strong wind events which impact SIC in the RSP are linked to Ross Ice Shelf Air Stream events (strong low-level jets in the region). The hypothesis that the increase in Ross Ice Shelf Air Stream events, associated with a strengthening of the Amundsen Sea Low, has contributed to trends in sea ice production in this region is examined.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 155
Author(s):  
Fiorenza Torricella ◽  
Romana Melis ◽  
Elisa Malinverno ◽  
Giorgio Fontolan ◽  
Mauro Bussi ◽  
...  

The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


Eos ◽  
2012 ◽  
Vol 93 (27) ◽  
pp. 256-256
Author(s):  
Colin Schultz

Nature ◽  
1979 ◽  
Vol 282 (5740) ◽  
pp. 703-705 ◽  
Author(s):  
Douglas R. MacAyeal ◽  
Robert H. Thomas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document