Impacts of strong surface winds on Antarctic Polynya

Author(s):  
Adrian McDonald

<p>This study investigates the impacts of strong wind events on the sea ice concentration within polynya regions, with a focus on the Ross Sea Polynya (RSP). In particular, this work quantifies the sensitivity of sea ice concentrations to surface winds and whether there are threshold wind speeds required for regions of the polynya  to open up with subsequent impacts on air-sea heat fluxes. To analyse these processes, we examine version 3.1 of the Bootstrap sea ice concentration (SIC) satellite data set derived from SSM/I brightness temperatures and how they are connected to the surface winds from the ERA5 reanalysis over the period 1979 to 2018. While we examine these relationships around the entire Antarctic continent, we focus on the RSP and low-level jets in the Ross Sea. In particular, we examine how strong wind events which impact SIC in the RSP are linked to Ross Ice Shelf Air Stream events (strong low-level jets in the region). The hypothesis that the increase in Ross Ice Shelf Air Stream events, associated with a strengthening of the Amundsen Sea Low, has contributed to trends in sea ice production in this region is examined.</p>

2017 ◽  
Vol 11 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H. J. Coggins ◽  
Wolfgang Rack

Abstract. We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.


2018 ◽  
Vol 12 (9) ◽  
pp. 3033-3044 ◽  
Author(s):  
Xiying Liu

Abstract. To study the influence of basal melting of the Ross Ice Shelf (BMRIS) on the Southern Ocean (ocean southward of 35∘ S) in quasi-equilibrium, numerical experiments with and without the BMRIS effect were performed using a global ocean–sea ice–ice shelf coupled model. In both experiments, the model started from a state of quasi-equilibrium ocean and was integrated for 500 years forced by CORE (Coordinated Ocean-ice Reference Experiment) normal-year atmospheric fields. The simulation results of the last 100 years were analyzed. The melt rate averaged over the entire Ross Ice Shelf is 0.25 m a−1, which is associated with a freshwater flux of 3.15 mSv (1 mSv = 103 m3 s−1). The extra freshwater flux decreases the salinity in the region from 1500 m depth to the sea floor in the southern Pacific and Indian oceans, with a maximum difference of nearly 0.005 PSU in the Pacific Ocean. Conversely, the effect of concurrent heat flux is mainly confined to the middle depth layer (approximately 1500 to 3000 m). The decreased density due to the BMRIS effect, together with the influence of ocean topography, creates local differences in circulation in the Ross Sea and nearby waters. Through advection by the Antarctic Circumpolar Current, the flux difference from BMRIS gives rise to an increase of sea ice thickness and sea ice concentration in the Ross Sea adjacent to the coast and ocean water to the east. Warm advection and accumulation of warm water associated with differences in local circulation decrease sea ice concentration on the margins of sea ice cover adjacent to open water in the Ross Sea in September. The decreased water density weakens the subpolar cell as well as the lower cell in the global residual meridional overturning circulation (MOC). Moreover, we observe accompanying reduced southward meridional heat transport at most latitudes of the Southern Ocean.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


2017 ◽  
Author(s):  
Xiying Liu

Abstract. To study the influence of basal melting of Ross Ice Shelf (BMR) on the Southern Ocean (ocean southward of 35° S) in quasi-equilibrium, numerical experiments with and without BMR effect have been performed with a global ocean-sea ice-ice shelf coupled model. In both experiments, the model started from a state of quasi-equilibrium ocean and was integrated for 500 years forced by CORE (Coordinated Ocean-ice Reference Experiment) normal year atmospheric fields. The simulation results of the last 100 years have been analysed. It’s shown that, the melt rate averaged over the entire Ross Ice Shelf is 0.253 m/a, which is associated with a freshwater flux of 3.15 mSv (1 mSv = 103 m3/s). The extra freshwater flux decreases the salinity in the Southern Ocean substantially whereas the effect of concurrent heat flux is not so significant except in the middle layer of water body (roughly from 1500 m to 3000 m). The decreased density due to BMR effect creates local circulation anomalies in the Ross Sea and nearby water with the help of ocean bathymetry. Through advection by the Antarctic Circumpolar Current, the flux anomaly from BMR gives rise to the increase of sea ice thickness and sea ice concentration in the Ross Sea adjacent to the coast and the ocean water westward. The warm advection and downwelling associated with the local circulation anomalies decrease the sea ice concentration in the rim of sea ice cover adjacent to open water in the Ross Sea in September. The decreased density weakens the sub-polar cell as well as the lower cell in the global residual meridional overturning circulation. And, northward meridional heat transport anomaly in most latitudes of the global ocean is accompanied accordingly.


1995 ◽  
Vol 53 (3) ◽  
pp. 145-152 ◽  
Author(s):  
G. Zibordi ◽  
M. Van Woert ◽  
G.P. Meloni ◽  
I. Canossi

2006 ◽  
Vol 44 ◽  
pp. 303-309 ◽  
Author(s):  
Margaret A. Knuth ◽  
Stephen F. Ackley

AbstractSea-ice conditions were observed using the AsPeCt observation protocol on three cruises in the Ross Sea spanning the Antarctic Summer Season (APIs, December 1999–February 2000; Anslope 1, March–April 2003; Anslope 2, February–April 2004). An additional dataset was analyzed from helicopter video Surveys taken during the APIs cruise. The helicopter video was analyzed using two techniques: first, as an AsPeCt dataset where it was Sampled visually for ice concentration, floe Sizes and ice type on a point basis at 11 km intervals; Second, computerized image processing on a Subset of nine helicopter flights to obtain ice concentration on a continuous basis (1 S intervals) for the entire flight. This continuous Sampling was used to validate the point-sampling methods to characterize the ice cover; the ‘AsPeCt Sampling’ on the helicopter video and the use of the AsPeCt protocol on the Ship Surveys. The estimates for average ice concentration agreed within 5% for the continuous digitized data and point Sampling at 11 km intervals in this comparison. The Ship and video in Situ datasets were then compared with ice concentrations from SsM/I passive microwave Satellite data derived using the Bootstrap and NAsA-Team algorithms. Less than 50% of the variance in Summer ice concentration observed in Situ was explainable by Satellite microwave data. The Satellite data were also inconsistent in measurement, both underestimating and overestimating the concentration for Summer conditions, but improved in the fall period when conditions were colder. This improvement was in the explainable variance of >70%, although in Situ concentration was underestimated (albeit consistently) by the Satellite imagery in fall.


2021 ◽  
Author(s):  
Xiaoqiao Wang ◽  
Zhaoru Zhang ◽  
Xuezhu Wang ◽  
Timo Vihma ◽  
Meng Zhou ◽  
...  

AbstractStrong offshore wind events (SOWEs) occur frequently near the Antarctic coast during austral winter. These wind events are typically associated with passage of synoptic- or meso-scale cyclones, which interact with the katabatic wind field and affect sea ice and oceanic processes in coastal polynyas. Based on numerical simulations from the coupled Finite Element Sea-ice Ocean Model (FESOM) driven by the CORE-II forcing, two coastal polynyas along the East Antarctica coast––the Prydz Bay Polynya and the Shackleton Polynya are selected to examine the response of sea ice and oceanic properties to SOWEs. In these polynyas, the southern or western flanks of cyclones play a crucial role in increasing the offshore winds depending on the local topography. Case studies for both polynyas show that during SOWEs, when the wind speed is 2–3 times higher than normal values, the offshore component of sea ice velocity can increase by 3–4 times. Sea ice concentration can decrease by 20–40%, and sea ice production can increase up to two to four folds. SOWEs increase surface salinity variability and mixed layer depth, and such effects may persist for 5–10 days. Formation of high salinity shelf water (HSSW) is detected in the coastal regions from surface to 800 m after 10–15 days of the SOWEs, while the HSSW features in deep layers exhibit weak response on the synoptic time scale. HSSW formation averaged over winter is notably greater in years with longer duration of SOWEs.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Olivier Lecomte ◽  
Hugues Goosse ◽  
Thierry Fichefet ◽  
Casimir de Lavergne ◽  
Antoine Barthélemy ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Zian Cheng ◽  
Xiaoping Pang ◽  
Xi Zhao ◽  
Alfred Stein

The variation of Ross Ice Shelf Polynya (RISP) ice production is a synergistic result of several factors. This study aims to analyze the 2003–2017 RISP ice production time series with respect to the impact of wind forcing on heat flux sources. RISP ice production was estimated from passive microwave sea ice concentration images and reanalysis meteorological data using a thermodynamic model. The total ice production was divided into four components according to the amount of ice produced by different heat fluxes: solar radiation component (Vs), longwave radiation component (Vl), sensible heat flux component (Vfs), and latent heat flux component (Vfe). The results show that Vfs made the largest contribution, followed by Vl and Vfe, while Vs had a negative contribution. Our study reveals that total ice production and Vl, Vfs, and Vfe highly correlated with the RISP area size, whereas Vs negatively correlated with the RISP area size in October, and had a weak influence from April to September. Since total ice production strongly correlates with the polynya area and this significantly correlates with the wind speed of the previous day, strong wind events lead to sharply increased ice production most of the time. Strong wind events, however, may only lead to mildly increasing ice production in October, when enlarged Vs reduces the ice production. Wind speed influences ice production by two mechanisms: impact on polynya area, and impact on heat exchange and phase transformation of ice. Vfs and Vfe are influenced by both mechanisms, while Vs and Vl are only influenced by impact on polynya area. These two mechanisms show different degrees of influence on ice production during different periods. Persistent offshore winds were responsible for the large RISP area and high ice production in October 2005 and June 2007.


Sign in / Sign up

Export Citation Format

Share Document