scholarly journals An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere

Author(s):  
Antony D. Clarke ◽  
Steven R. Owens ◽  
Jingchuan Zhou
2005 ◽  
Vol 5 (12) ◽  
pp. 3233-3250 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. We use the new GLOMAP model of global aerosol microphysics to investigate the sensitivity of modelled sulfate and sea salt aerosol properties to uncertainties in the driving microphysical processes and compare these uncertainties with those associated with aerosol and precursor gas emissions. Overall, we conclude that uncertainties in microphysical processes have a larger effect on global sulfate and sea salt derived condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations than uncertainties in present-day sulfur emissions. Our simulations suggest that uncertainties in predicted sulfate and sea salt CCN abundances due to poorly constrained microphysical processes are likely to be of a similar magnitude to long-term changes in sulfate and sea salt CCN due to changes in anthropogenic emissions. A microphysical treatment of the global sulfate aerosol allows the uncertainty in climate-relevant aerosol properties to be attributed to specific processes in a way that has not been possible with simpler aerosol schemes. In particular we conclude that: (1) changes in the binary H2SO4-H2O nucleation rate and condensation rate of gaseous H2SO4 cause a shift in the vertical location of the upper tropospheric CN layer by as much as 3 km, while the shape of the CN profile is essentially pre-served (2) uncertainties in the binary H2SO4-H2O nucleation rate have a relatively insignificant effect on marine boundary layer (MBL) aerosol properties; (3) emitting a fraction of anthropogenic SO2 as particulates (to represent production of sulfate particles in power plant plumes below the scale of the model grid (which is of the order of 300 km)) has the potential to change the global mean MBL sulfate-derived CN concentrations by up to 72%, and changes of up to a factor 20 can occur in polluted continental regions; (4) predicted global mean MBL sulfate and sea salt CCN concentrations change by 10 to 60% when several microphysical processes are changed within reasonable uncertainty ranges; (5) sulfate and sea salt derived CCN concentrations are particularly sensitive to primary particle emissions, with global mean MBL sulfate and sea salt CCN changing by up to 27% and local concentrations over continental regions changing by more than 100% when the percentage of anthropogenic SO2 emitted as particulates is changed from 0 to 5%; (6) large changes in sea spray flux have insignificant effects on global sulfate aerosol except when the mass accommodation coefficient of sulfuric acid on the salt particles is set unrealistically low.


2013 ◽  
Vol 13 (6) ◽  
pp. 17087-17121 ◽  
Author(s):  
J. Browse ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
C. E. Birch ◽  
S. R. Arnold ◽  
...  

Abstract. Loss of summertime Arctic sea ice will lead to a large increase in the emission of aerosols and precursor gases from the ocean surface. It has been suggested that these enhanced emissions will exert substantial aerosol radiative forcings, dominated by the indirect effect of aerosol on clouds. Here, we investigate the potential for these indirect forcings using a global aerosol microphysics model evaluated against aerosol observations from the ASCOS campaign to examine the response of Arctic cloud condensation nuclei (CCN) to sea-ice retreat. In response to a complete loss of summer ice, we find that north of 70° N emission fluxes of sea-salt, marine primary organic aerosol (OA) and dimethyl sulphide increase by a factor of ~10, ~4 and ~15, respectively. However, the CCN response is weak, with negative changes over the central Arctic ocean. The weak response is due to the efficient scavenging of aerosol by extensive drizzling stratocumulus clouds. In the scavenging-dominated Arctic environment, the production of condensable vapour from oxidation of dimethyl sulphide grows particles to sizes where they can be scavenged. This loss is not sufficiently compensated by new particle formation, due to the suppression of nucleation by the large condensation sink resulting from sea-salt and primary OA emissions. Thus, our results suggest that increased aerosol emissions will not cause a climate feedback through changes in cloud microphysical and radiative properties.


1997 ◽  
Vol 24 (6) ◽  
pp. 655-658 ◽  
Author(s):  
Kiyoshi Matsumoto ◽  
Hiroshi Tanaka ◽  
Ippei Nagao ◽  
Yutaka Ishizaka

2021 ◽  
Vol 118 (42) ◽  
pp. e2110472118
Author(s):  
Gordon A. Novak ◽  
Charles H. Fite ◽  
Christopher D. Holmes ◽  
Patrick R. Veres ◽  
J. Andrew Neuman ◽  
...  

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2. When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.


2016 ◽  
Vol 16 (22) ◽  
pp. 14635-14656 ◽  
Author(s):  
Carlos Eduardo Souto-Oliveira ◽  
Maria de Fátima Andrade ◽  
Prashant Kumar ◽  
Fábio Juliano da Silva Lopes ◽  
Marly Babinski ◽  
...  

Abstract. Atmospheric aerosol is the primary source of cloud condensation nuclei (CCN). The microphysics and chemical composition of aerosols can affect cloud development and the precipitation process. Among studies conducted in Latin America, only a handful have reported the impact of urban aerosol on CCN activation parameters such as activation ratio (AR) and activation diameter (Dact). With over 20 million inhabitants, the Metropolitan Area of São Paulo (MASP) is the largest megacity in South America. To our knowledge, this is the first study to assess the impact that remote sources and new particle formation (NPF) events have on CCN activation properties in a South American megacity. The measurements were conducted in the MASP between August and September 2014. We measured the CCN within the 0.2–1.0 % range of supersaturation, together with particle number concentration (PNC) and particle number distribution (PND), as well as trace-element concentrations and black carbon (BC). NPF events were identified on 35 % of the sampling days. Combining multivariate analysis in the form of positive matrix factorization (PMF) with an aerosol profile from lidar and HYSPLIT model analyses allowed us to identify the main contribution of vehicular traffic on all days and sea salt and biomass burning from remote regions on 28 and 21 % of the sampling days, respectively. The AR and Dact parameters showed distinct patterns for daytime with intense vehicular traffic and nighttime periods. For example, CCN activation was lower during the daytime than during the nighttime periods, a pattern that was found to be associated mainly with local road-traffic emissions. A decrease in CCN activation was observed on the NPF event days, mainly due to high concentrations of particles with smaller diameters. We also found that aerosols from sea salt, industrial emissions, and biomass burning had minor effects on Dact. For example, nights with biomass burning and vehicular emissions showed slightly lower CCN activation properties than sea-salt, industrial and non-event nights. Our results show that particulate matter from local vehicular emissions during the daytime has a greater effect on CCN activation parameters than that from remote sources.


2016 ◽  
Vol 16 (4) ◽  
pp. 2675-2688 ◽  
Author(s):  
Thomas B. Kristensen ◽  
Thomas Müller ◽  
Konrad Kandler ◽  
Nathalie Benker ◽  
Markus Hartmann ◽  
...  

Abstract. Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June–July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.


Sign in / Sign up

Export Citation Format

Share Document