scholarly journals A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties

2005 ◽  
Vol 5 (12) ◽  
pp. 3233-3250 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. We use the new GLOMAP model of global aerosol microphysics to investigate the sensitivity of modelled sulfate and sea salt aerosol properties to uncertainties in the driving microphysical processes and compare these uncertainties with those associated with aerosol and precursor gas emissions. Overall, we conclude that uncertainties in microphysical processes have a larger effect on global sulfate and sea salt derived condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations than uncertainties in present-day sulfur emissions. Our simulations suggest that uncertainties in predicted sulfate and sea salt CCN abundances due to poorly constrained microphysical processes are likely to be of a similar magnitude to long-term changes in sulfate and sea salt CCN due to changes in anthropogenic emissions. A microphysical treatment of the global sulfate aerosol allows the uncertainty in climate-relevant aerosol properties to be attributed to specific processes in a way that has not been possible with simpler aerosol schemes. In particular we conclude that: (1) changes in the binary H2SO4-H2O nucleation rate and condensation rate of gaseous H2SO4 cause a shift in the vertical location of the upper tropospheric CN layer by as much as 3 km, while the shape of the CN profile is essentially pre-served (2) uncertainties in the binary H2SO4-H2O nucleation rate have a relatively insignificant effect on marine boundary layer (MBL) aerosol properties; (3) emitting a fraction of anthropogenic SO2 as particulates (to represent production of sulfate particles in power plant plumes below the scale of the model grid (which is of the order of 300 km)) has the potential to change the global mean MBL sulfate-derived CN concentrations by up to 72%, and changes of up to a factor 20 can occur in polluted continental regions; (4) predicted global mean MBL sulfate and sea salt CCN concentrations change by 10 to 60% when several microphysical processes are changed within reasonable uncertainty ranges; (5) sulfate and sea salt derived CCN concentrations are particularly sensitive to primary particle emissions, with global mean MBL sulfate and sea salt CCN changing by up to 27% and local concentrations over continental regions changing by more than 100% when the percentage of anthropogenic SO2 emitted as particulates is changed from 0 to 5%; (6) large changes in sea spray flux have insignificant effects on global sulfate aerosol except when the mass accommodation coefficient of sulfuric acid on the salt particles is set unrealistically low.

2005 ◽  
Vol 5 (3) ◽  
pp. 3437-3489 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. We use the new GLOMAP model of global aerosol microphysics to investigate the sensitivity of modelled sulfate and sea salt aerosol properties to uncertainties in the driving microphysical processes and compare these uncertainties with those associated with aerosol and precursor gas emissions. Overall, we conclude that uncertainties in microphysical processes have a larger effect on global condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations than uncertainties in present-day sulfur emissions. Our simulations suggest that uncertainties in predicted sulfate and sea salt CCN abundances due to poorly constrained microphysical processes are likely to be of a similar magnitude to long-term changes in CCN due to changes in anthropogenic emissions. A microphysical treatment of the global sulfate aerosol allows the uncertainty in climate-relevant aerosol properties to be attributed to specific processes in a way that has not been possible with simpler aerosol schemes. In particular we conclude that: (1) changes in the binary H2SO4-H2O nucleation rate and condensation rate of gaseous H2SO4 cause a shift in the vertical location of the upper tropospheric CN layer by as much as 3 km, while changes in absolute concentration are relatively small; (2) uncertainties in the binary H2SO4-H2O nucleation rate have a relatively insignificant effect on boundary layer aerosol properties; (3) production of sulfate particles in power plant plumes below the scale of the model grid (which is of the order of 300 km) has the potential to change the global mean sulfate-derived CN concentration by a factor 2 or more at the surface, and changes of up to a factor 20 can occur in polluted regions; (4) predicted global mean sulfate and sea salt CCN concentrations change by 10 to 40% at the surface when several microphysical processes are changed within reasonable uncertainty ranges; (5) CCN concentrations are particularly sensitive to primary sulfate particle emissions, with global mean CCN changing by up to 40% and local concentrations changing by more than 100% when the percentage of anthropogenic SO2 emitted as particulates in plumes is changed from 0 to 5%; (6) uncertainties in CCN due to the mode of sulfate emission (i.e., the fraction of sulfur emitted as primary particles) are larger than those (~15%) caused by a ±25% change in total sulfur emissions; (7) large changes in sea spray flux have insignificant effects on global sulfate aerosol except when the mass accommodation coefficient of sulfuric acid on the salt particles is set unrealistically low.


2002 ◽  
Vol 2 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Y. J. Yoon ◽  
P. Brimblecombe

Abstract. The concentration of cloud condensation nuclei (CCN) in the marine boundary layer (MBL) was estimated from dimethyl sulfide (DMS) flux, sea salt (SS) emission, and aerosols entrained from the free troposphere (FT). Only under clean air conditions, did the nucleation of DMS derived sulfur (DMS CCN) contribute significantly to the MBL CCN. The accommodation coefficient for sulfuric acid mass transfer was found to be a very important parameter in the modeling the contribution of DMS to MBL CCN. The relationship between seawater DMS and MBL CCN was found to be non-linear mainly due to the transfer processes of sulfuric acid onto aerosols. In addition, sea salt derived CCN (SS CCN) and entrained aerosol from the FT (FT CCN) affected the MBL CCN directly, by supplying CCN, and indirectly, by behaving as an efficient sink for sulfuric acid. The SS CCN explained more than 50% of the total predicted MBL CCN when wind speeds were moderate and high. Sea salt and FT aerosol may often be more efficient sources of MBL CCN than DMS.


2020 ◽  
Author(s):  
Tim Bates ◽  
Patricia Quinn

<p>The fair-weather cumulus clouds, that cover much of the low-latitude oceans, affect the radiation balance of the planet by reflecting incoming solar radiation and absorbing outgoing longwave radiation.  These clouds also drive atmospheric circulation by mixing the lower atmosphere in a process called shallow convection.  This mixing, in turn, affects sea surface temperature and salinity by moderating the air-sea exchange of energy and moisture.  Marine boundary layer (MBL) atmospheric aerosols play a role in the processes described above by scattering and absorbing solar radiation and by serving as cloud condensation nuclei (CCN) thereby influencing cloud droplet concentrations and size; the extent, lifetime, and albedo of clouds; and the frequency and intensity of precipitation. Quantifying the role of aerosols over the Northwest Tropical Atlantic is critical to advance understanding of shallow convection and air-sea interactions.</p><p>MBL aerosol properties were measured aboard the RV Ronald H. Brown during the EUREC4A and ATOMIC field studies in January/February 2020.  Aerosols encountered during the study include background sulfate/sea spray particles and African dust/biomass burning particles.  Aerosol physical, chemical, optical and cloud condensation nuclei properties will be presented and their interaction with local and regional circulation.</p>


2001 ◽  
Vol 1 (1) ◽  
pp. 93-123 ◽  
Author(s):  
Y. J. Yoon ◽  
P. Brimblecombe

Abstract. The concentration of cloud condensation nuclei (CCN) in the marine boundary layer (MBL) was estimated from dimethyl sulfide (DMS) flux, seasalt (SS) emission, and aerosols entrained from the free troposphere (FT). Only under clean air conditions, did the nucleation of DMS derived sulfur (DMS CCN) contribute significantly to the MBL CCN. The accommodation coefficient for sulfuric acid mass transfer was found to be a very important parameter in the modeling the contribution of DMS to MBL CCN. The relationship between seawater DMS and MBL CCN was found to be non-linear mainly due to the transfer processes of sulfuric acid onto aerosols. In addition, seasalt derived CCN (SS CCN) and entrained CCN from the FT (FT CCN) affected the MBL CCN directly, by supplying CCN, and indirectly, by behaving as an efficient sink for sulfuric acid. The SS CCN explained more than 50% of the total predicted MBL CCN when wind speeds were moderate and high. Seasalt and FT CCN may often be more efficient sources of MBL CCN than DMS.


2016 ◽  
Vol 16 (4) ◽  
pp. 2675-2688 ◽  
Author(s):  
Thomas B. Kristensen ◽  
Thomas Müller ◽  
Konrad Kandler ◽  
Nathalie Benker ◽  
Markus Hartmann ◽  
...  

Abstract. Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June–July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.


2017 ◽  
Vol 17 (7) ◽  
pp. 4419-4432 ◽  
Author(s):  
John L. Gras ◽  
Melita Keywood

Abstract. Multi-decadal observations of aerosol microphysical properties from regionally representative sites can be used to challenge regional or global numerical models that simulate atmospheric aerosol. Presented here is an analysis of multi-decadal observations at Cape Grim (Australia) that characterise production and removal of the background marine aerosol in the Southern Ocean marine boundary layer (MBL) on both short-term weather-related and underlying seasonal scales.A trimodal aerosol distribution comprises Aitken nuclei (< 100 nm), cloud condensation nuclei (CCN)/accumulation (100–350 nm) and coarse-particle (> 350 nm) modes, with the Aitken mode dominating number concentration. Whilst the integrated particle number in the MBL over the clean Southern Ocean is only weakly dependent on wind speed, the different modes in the aerosol size distribution vary in their relationship with wind speed. The balance between a positive wind dependence in the coarse mode and negative dependence in the accumulation/CCN mode leads to a relatively flat wind dependence in summer and moderately strong positive wind dependence in winter. The changeover in wind dependence of these two modes occurs in a very small size range at the mode intersection, indicative of differences in the balance of production and removal in the coarse and accumulation/CCN modes.Whilst a marine biological source of reduced sulfur appears to dominate CCN concentration over the summer months (December to February), other components contribute to CCN over the full annual cycle. Wind-generated coarse-mode sea salt is an important CCN component year round and is the second-most-important contributor to CCN from autumn through to mid-spring (March to November). A portion of the non-seasonally dependent contributor to CCN can clearly be attributed to wind-generated sea salt, with the remaining part potentially being attributed to long-range-transported material. Under conditions of greater supersaturation, as expected in more convective cyclonic systems and their associated fronts, Aitken mode particles become increasingly important as CCN.


2020 ◽  
Author(s):  
Patricia Quinn ◽  
Tim Bates ◽  
Eric Saltzman ◽  
Tom Bell ◽  
Mike Behrenfeld

&lt;p&gt;The emission of sea spray aerosol (SSA) and dimethylsulfide (DMS) from the ocean results in marine boundary layer aerosol particles that can impact Earth&amp;#8217;s radiation balance by directly scattering solar radiation and by acting as cloud condensation nuclei (CCN), thereby altering cloud properties. The surface ocean is projected to warm by 1.3 to 2.8&amp;#176;C globally over the 21&lt;sup&gt;st&lt;/sup&gt; century. Impacts of this warming on plankton blooms, ocean ecosystems, and ocean-to-atmosphere fluxes of aerosols and their precursor gases are highly uncertain. A fundamental understanding of linkages between surface ocean ecosystems and ocean-derived aerosols is required to address this uncertainty. One approach for improved understandings of these linkages is simultaneous measurements of relevant surface ocean and aerosol properties in an ocean region with seasonally varying plankton blooms and a minimally polluted overlying atmosphere. The western North Atlantic hosts the largest annual phytoplankton bloom in the global ocean with a large spatial and seasonal variability in plankton biomass and composition. Periods of low aerosol number concentrations associated with unpolluted air masses allow for the detection of linkages between ocean ecosystems and ocean-derived aerosol.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Five experiments were conducted in the western North Atlantic between 2014 and 2018 with the objective of finding links between the bloom and marine aerosols. These experiments include the second Western Atlantic Climate Study (WACS-2) and four North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) cruises. This series of cruises was the first time the western North Atlantic bloom was systematically sampled during every season with extensive ocean and atmosphere measurements able to assess how changes in the state of the bloom might impact ocean-derived aerosol properties. Measurements of unheated and heated number size distributions, cloud condensation nuclei (CCN) concentrations, and aerosol composition were used to identify primary and secondary aerosol components that could be related to the state of the bloom. Only periods of clean marine air, as defined by radon, particle number concentration, aerosol light absorption coefficient, and back trajectories, were included in the analysis.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;CCN concentrations at 0.1% supersaturation were best correlated (r&lt;sup&gt;2&lt;/sup&gt; = 0.73) with accumulation mode nss SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;=&lt;/sup&gt;. Sea spray aerosol (SSA) was only correlated with CCN during November when bloom accumulation had not yet occurred and dimethylsulfide (DMS) concentrations were at a minimum. The fraction of CCN attributable to SSA was less than 20% during March, May/June, and September, indicating the limited contribution of SSA to the CCN population of the western North Atlantic atmosphere. The strongest link between the plankton bloom and aerosol and cloud properties appears to be due to biogenic non-seasalt SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;=&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document