climate feedback
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 157)

H-INDEX

52
(FIVE YEARS 8)

Author(s):  
Ethan David Coffel ◽  
Corey Lesk ◽  
Jonathan M Winter ◽  
Erich C Osterberg ◽  
Justin Staller Mankin

Abstract U.S. maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over U.S. croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central U.S. and substantially reduce them over the southern U.S., benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7 – 3.9; 13.7 – 20.0%) and 0.6 (0.4 – 0.7; 7.5 – 13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing U.S. crops to more harmful heat extremes.


2022 ◽  
Author(s):  
Junxing Chen ◽  
Hehe Jiang ◽  
Ming Tang ◽  
Jihua Hao ◽  
Meng Tian ◽  
...  

Abstract Terrestrial planets Venus and Earth have similar sizes, masses, and bulk compositions, but only Earth developed planetary-scale plate tectonics. Plate tectonics generates weatherable fresh rocks and transfers surface carbon back to Earth’s interior, which provides a long-term climate feedback, serving as a thermostat to keep Earth a habitable planet. Yet Venus shares a few common features with early Earth, such as stagnant-lid tectonics and the possible early development of a liquid ocean. Given all these similarities with early Earth, why would Venus fail to develop global-scale plate tectonics? In this study, we explore solutions to this problem by examining Venus’ slab densities under hypothesized subduction-zone conditions. Our petrologic simulations show that eclogite facies may be reached at greater depths on Venus than on Earth, and Venus’ slab densities are consistently lower than Earth’s. We suggest that the lack of sufficient density contrast between the high-pressure metamorphosed slab and mantle rocks may have impeded self-sustaining subduction. Although plume-induced crustal downwelling exists on Venus, the dipping of Venus’ crustal rocks to mantle depth fails to transition into subduction tectonics. As a consequence, the supply of fresh silicate rocks to the surface has been limited. This missing carbon sink eventually diverged the evolution of Venus’ surface environment from that of Earth.


2022 ◽  
Author(s):  
Yann Quilcaille ◽  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher

Abstract. While Earth system models (ESMs) are process-based and can be run at high resolutions, they are only limited by computational costs. Reduced complexity models, also called simple climate models or compact models, provide a much cheaper alternative, although at a loss of spatial information. Their structure relies on the sciences of the Earth system, but with a calibration against the most complex models. Therefore it remains important to evaluate and validate reduced complexity models. Here, we diagnose such a model the newest version of OSCAR (v3.1) using observations and results from ESMs from the current Coupled Model Intercomparison Project 6. A total of 99 experiments are selected for simulation with OSCAR v3.1 in a probabilistic framework, reaching a total of 567,700,000 simulated years. A first highlight of this exercise that the ocean carbon cycle of the model may diverge under some parametrizations and for high-warming scenarios. The diverging runs caused by this unstability were discarded in the post-processing. Then, each physical parametrization is weighted based on its performance against a set of observations, providing us with constrained results. Overall, OSCAR v3.1 shows good agreement with observations, ESMs and emerging properties. It qualitively reproduces the responses of complex ESMs, for all aspects of the Earth system. We observe some quantitative differences with these models, most of them being due to the observational constraints. Some specific features of OSCAR also contribute to these differences, such as its fully interactive atmospheric chemistry and endogenous calculations of biomass burning, wetlands CH4 and permafrost CH4 and CO2 emissions. The main points of improvements are a low sensitivity of the land carbon cycle to climate change, an unstability of the ocean carbon cycle, the seemingly too simple climate module, and the too strong climate feedback involving short-lived species. Beyond providing a key diagnosis of the OSCAR model in the context of the reduced-complexity models intercomparison project (RCMIP), this work is also meant to help with the upcoming calibration of OSCAR on CMIP6 results, and to provide a large group of CMIP6 simulations run consistently within a probabilistic framework.


Author(s):  
Jingwei Yun ◽  
Erin Evoy ◽  
Soleil Worthy ◽  
Melody Fraser ◽  
Daniel Veber ◽  
...  

Ice nucleating particles (INPs) are a small subset of atmospheric particles that can initiate the formation of ice in mixed-phase clouds. Here we report concentrations of INPs during October and...


2021 ◽  
Author(s):  
Colin Rowell ◽  
Mark Jellinek ◽  
Sahand Hajimirza ◽  
Thomas Aubry

Explosive volcanic eruptions can inject sulfur dioxide (SO2) into the stratosphere to form aerosol particles that modify Earth’s radiation balance and drive surface cooling. Eruptions involving interactions with shallow layers (< 500 m) of surface water and ice modify the eruption dynamics that govern the delivery of SO2 to the stratosphere. External surface water potentially controls the evolution of explosive eruptions in two ways that are poorly understood: (1) by modulating the hydrostatic pressure within the conduit and at the vent, and (2) through the ingestion and mixing of external water, which governs fine ash production as well as eruption column buoyancy flux. To make progress, we couple one-dimensional models of magma flow in the conduit and atmospheric column rise through a novel ”magma-water interaction” model that simulates the occurrence, extent and consequences of water entrainment depending on the depth of a surface water layer. We explore the effects of hydrostatic pressure on magma ascent in the conduit and gas decompression at the vent, and the conditions for which water entrainment drives fine ash production by quench fragmentation, eruption column collapse, or outright failure of the jet to breach the water surface. We show that the efficiency of water entrainment into the jet is the predominant control on jet behavior. For an increase in water depth of 50 to 100 m, the critical magma mass eruption rate required for eruption columns to reach the tropopause increases by an order of magnitude. Finally, we estimate that enhanced emission of fine ash leads to up to a 2-fold increase in the mass flux of particles < 125 microns to spreading umbrella clouds, together with up to a 10-fold increase in water mass flux, conditions that can enhance the removal of SO2 via chemical scavenging and ash sedimentation. Overall, compared to purely magmatic eruptions, we suggest that hydrovolcanic eruptions will be characterized by a reduced delivery of SO2 to the stratosphere. Our results thus suggest the possibility of an unrecognized volcano-climate feedback mechanism arising from modification of volcanic climate forcing by direct interaction of erupting magma with varying distributions of water and ice at the Earth’s surface.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ruilin Huang ◽  
Thomas W. Crowther ◽  
Yueyu Sui ◽  
Bo Sun ◽  
Yuting Liang

AbstractIrreversible climate change alters the decomposition and sequestration of soil carbon (C). However, the stability of C components in soils with different initial organic matter contents and its relationship with the response of major decomposers to climate warming are still unclear. In this study, we translocated Mollisols with a gradient of organic matter (OM) contents (2%–9%) from in situ cold region to five warmer climatic regions to simulate climate change. Soil C in C-rich soils (OM >5%) was more vulnerable to translocation warming than that in C-poor soils (OM ≤ 5%), with a major loss of functional groups like O-alkyl, O-aryl C and carboxyl C. Variations of microbial β diversity with latitude, temperature and precipitation indicated that C-rich soils contained more resistant bacterial communities and more sensitive fungal communities than C-poor soils, which led to strong C metabolism and high utilization ability of the community in C-rich soils in response to translocation warming. Our results suggest that the higher sensitivity of soils with high organic matter content to climate change is related to the stability and metabolic capacity of major bacterial decomposers, which is important for predicting soil-climate feedback.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. E. Marushchak ◽  
J. Kerttula ◽  
K. Diáková ◽  
A. Faguet ◽  
J. Gil ◽  
...  

AbstractIn contrast to the well-recognized permafrost carbon (C) feedback to climate change, the fate of permafrost nitrogen (N) after thaw is poorly understood. According to mounting evidence, part of the N liberated from permafrost may be released to the atmosphere as the strong greenhouse gas (GHG) nitrous oxide (N2O). Here, we report post-thaw N2O release from late Pleistocene permafrost deposits called Yedoma, which store a substantial part of permafrost C and N and are highly vulnerable to thaw. While freshly thawed, unvegetated Yedoma in disturbed areas emit little N2O, emissions increase within few years after stabilization, drying and revegetation with grasses to high rates (548 (133–6286) μg N m−2 day−1; median with (range)), exceeding by 1–2 orders of magnitude the typical rates from permafrost-affected soils. Using targeted metagenomics of key N cycling genes, we link the increase in in situ N2O emissions with structural changes of the microbial community responsible for N cycling. Our results highlight the importance of extra N availability from thawing Yedoma permafrost, causing a positive climate feedback from the Arctic in the form of N2O emissions.


Sign in / Sign up

Export Citation Format

Share Document