Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms

2007 ◽  
Vol 112 (A8) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Basu ◽  
Su. Basu ◽  
F. J. Rich ◽  
K. M. Groves ◽  
E. MacKenzie ◽  
...  
1977 ◽  
Vol 82 (32) ◽  
pp. 5257-5261 ◽  
Author(s):  
R. F. Woodman ◽  
R. G. Rastogi ◽  
C. Calderon

2002 ◽  
Vol 20 (12) ◽  
pp. 1977-1985 ◽  
Author(s):  
R. Sridharan ◽  
C. V. Devasia ◽  
N. Jyoti ◽  
Diwakar Tiwari ◽  
K. S. Viswanathan ◽  
...  

Abstract. The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N), India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i) the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii) significant increase in h' F immediately following the eclipse and (iii) distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F) rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities)


Author(s):  
Michael W. Liemohn ◽  
Matt Jazowski ◽  
Janet U. Kozyra ◽  
Natalia Ganushkina ◽  
Michelle F. Thomsen ◽  
...  

Ninety intense magnetic storms (minimum Dst value of less than −100 nT) from solar cycle 23 (1996–2005) were simulated using the hot electron and ion drift integrator (HEIDI) model. All 90 storm intervals were run with several electric fields and nightside plasma boundary conditions (five run sets). Storms were classified according to their solar wind driver, including corotating interaction regions (CIRs) and interplanetary coronal mass ejections (ICMEs). Data-model comparisons were made against the observed Dst index (specifically, Dst*) and dayside hot-ion measurements from geosynchronous orbiting spacecraft. It is found that the data-model goodness-of-fit values are different for CIR-driven storms relative to ICME-driven storms. The results are also different for the same storm category for different boundary conditions. None of the CIR-driven events was overpredicted by HEIDI, while the dayside comparisons were comparable for the different drivers. The results imply that the outer magnetosphere is responding differently to the two kinds of solar wind drivers, even though the resulting storm size might be similar. That is, for ICME-driven events, magnetospheric currents inside of geosynchronous orbit dominate the Dst perturbation, while for CIR-driven events, currents outside of this boundary have a systematically larger contribution.


2005 ◽  
Vol 32 (17) ◽  
Author(s):  
N. Maruyama ◽  
A. D. Richmond ◽  
T. J. Fuller-Rowell ◽  
M. V. Codrescu ◽  
S. Sazykin ◽  
...  

2004 ◽  
Vol 22 (9) ◽  
pp. 3195-3202 ◽  
Author(s):  
L. Z. Biktash

Abstract. The equatorial ionosphere parameters, Kp, Dst, AU and AL indices characterized contribution of different magnetospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the geomagnetic activity effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict near 70% of scintillations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of electron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind - magnetosphere - ionosphere during magnetic storms have progressed greatly. According to present view, the intensity of the electric fields and currents at the polar regions, as well as the magnetospheric ring current intensity, are strongly dependent on the variations of the interplanetary magnetic field. The magnetospheric ring current cannot directly penetrate the equatorial ionosphere and because of this difficulties emerge in explaining its relation to scintillation activity. On the other hand, the equatorial scintillations can be observed in the absence of the magnetospheric ring current. It is shown that in addition to Aarons' criteria for the prediction of the ionospheric scintillations, models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere currents and the solar wind.


2009 ◽  
Vol 27 (5) ◽  
pp. 2035-2044 ◽  
Author(s):  
W. J. Burke ◽  
C. Y. Huang ◽  
R. D. Sharma

Abstract. During magnetic storms the development of equatorial plasma bubbles (EPBs) and distributions of thermospheric densities are strongly influenced by the histories of imposed magnetospheric electric (εM) fields. Periods of intense EPB activity driven by penetration εM fields in the main phase are followed by their worldwide absence during recovery. A new method is applied to estimate global thermospheric energy (Eth) budgets from orbit-averaged densities measured by accelerometers on polar-orbiting satellites. During the main phase of storms Eth increases as long as the stormtime εM operates, then exponentially decays toward quiet-time values during early recovery. Some fraction of the energy deposited at high magnetic latitudes during the main phase propagates into the subauroral ionosphere-thermosphere where it affects chemical and azimuthal-wind dynamics well into recovery. We suggest a scenario wherein fossils of main phase activity inhibit full restoration of quiet-time dayside dynamos and pre-reversal enhancements of upward plasma drifts near dusk denying bottomside irregularities sufficient time to grow into EPBs.


Sign in / Sign up

Export Citation Format

Share Document