Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations

2009 ◽  
Vol 114 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Libo Liu ◽  
Yiding Chen
2001 ◽  
Vol 1 (1/2) ◽  
pp. 53-59 ◽  
Author(s):  
Sh. Naaman ◽  
L. S. Alperovich ◽  
Sh. Wdowinski ◽  
M. Hayakawa ◽  
E. Calais

Abstract. In this paper, perturbations of the ionospheric Total Electron Content (TEC) are compared with geomagnetic oscillations. Comparison is made for a few selected periods, some during earthquakes in California and Japan and others at quiet periods in Israel and California. Anomalies in TEC were extracted using Global Positioning System (GPS) observations collected by GIL (GPS in Israel) and the California permanent GPS networks. Geomagnetic data were collected in some regions where geomagnetic observatories and the GPS network overlaps. Sensitivity of the GPS method and basic wave characteristics of the ionospheric TEC perturbations are discussed. We study temporal variations of ionospheric TEC structures with highest reasonable spatial resolution around 50 km. Our results show no detectable TEC disturbances caused by right-lateral strike-slip earthquakes with minor vertical displacement. However, geomagnetic observations obtained at two observatories located in the epicenter zone of a strong dip-slip earthquake (Kyuchu, M = 6.2, 26 March 1997) revealed geomagnetic disturbances occurred 6–7 h before the earthquake.


2009 ◽  
Vol 44 (3) ◽  
pp. 385-394 ◽  
Author(s):  
M.J.A. Bolzan ◽  
F. Becker-Guedes ◽  
P.R. Fagundes ◽  
Y. Sahai ◽  
V.G. Pillat ◽  
...  

2009 ◽  
Vol 43 (11) ◽  
pp. 1757-1761 ◽  
Author(s):  
O.K. Obrou ◽  
M.N. Mene ◽  
A.T. Kobea ◽  
K.Z. Zaka

2011 ◽  
Vol 29 (5) ◽  
pp. 865-873 ◽  
Author(s):  
M. P. Natali ◽  
A. Meza

Abstract. Annual, semiannual and seasonal variations of the Vertical Total Electron Content (VTEC) have been investigated during high solar activity in 2000. In this work we use Global IGS VTEC maps and Principal Component Analysis to study spatial and temporal ionospheric variability. The behavior of VTEC variations at two-hour periods, at noon and at night is analyzed. Particular characteristics associated with each period and the geomagnetic regions are highlighted. The variations at night are smaller than those obtained at noon. At noon it is possible to see patterns of the seasonal variation at high latitude, and patterns of the semiannual anomaly at low latitudes with a slow decrease towards mid latitudes. At night there is no evidence of seasonal or annual anomaly for any region, but it was possible to see the semiannual anomaly at low latitudes with a sudden decrease towards mid latitudes. In general, the semiannual behavior shows March–April equinox at least 40 % higher than September one. Similarities and differences are analyzed also with regard to the same analysis done for a period of low solar activity.


2019 ◽  
Vol 64 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Patrick Mungufeni ◽  
Yenca Migoya-Orué ◽  
John Bosco Habarulema ◽  
Sandro M. Radicella

GPS Solutions ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 83-95 ◽  
Author(s):  
Angeline G. Burrell ◽  
Nelson A. Bonito ◽  
Charles S. Carrano

2007 ◽  
Vol 25 (12) ◽  
pp. 2609-2614 ◽  
Author(s):  
T. Maruyama

Abstract. A regional reference model of total electron content (TEC) was constructed using data from the GPS Earth Observation Network (GEONET), which consists of more than 1000 Global Positioning System (GPS) satellite receivers distributed over Japan. The data covered almost one solar activity period from April 1997 to June 2007. First, TECs were determined for 32 grid points, expanding from 27 to 45° N in latitude and from 127 to 145° E in longitude at 15-min intervals. Secondly, the time-latitude variation averaged over three days was determined by using the surface harmonic functional expansion. The coefficients of the expansion were then modeled by using a neural network technique with input parameters of the season (day of the year) and solar activity (F10.7 index and sunspot number). Thus, two-dimensional TEC maps (time vs. latitude) can be obtained for any given set of solar activity and day of the year.


Sign in / Sign up

Export Citation Format

Share Document