geomagnetic observations
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6598
Author(s):  
Xiaoyu Shen ◽  
Yuntian Teng ◽  
Xingxing Hu

Traditional fluxgate sensors used in geomagnetic field observations are large, costly, power-consuming and often limited in their use. Although the size of the micro-fluxgate sensors has been significantly reduced, their performance, including indicators such as accuracy and signal-to-noise, does not meet observational requirements. To address these problems, a new race-track type probe is designed based on a magnetic core made of a Co-based amorphous ribbon. The size of this single-component probe is only Φ10 mm × 30 mm. The signal processing circuit is also optimized. The whole size of the sensor integrated with probes and data acquisition module is Φ70 mm × 100 mm. Compared with traditional fluxgate and micro-fluxgate sensors, the designed sensor is compact and provides excellent performance equal to traditional fluxgate sensors with good linearity and RMS noise of less than 0.1 nT. From operational tests, the results are in good agreement with those from a standard fluxgate magnetometer. Being more suitable for modern dense deployment of geomagnetic observations, this small-size fluxgate sensor offers promising research applications at lower costs.


2021 ◽  
Author(s):  
Felix Gerick ◽  
Dominique Jault ◽  
Jerome Noir

<p> Fast changes of Earth's magnetic field could be explained by inviscid and diffusion-less quasi-geostrophic (QG) Magneto-Coriolis modes. We present a hybrid QG model with columnar flows and three-dimensional magnetic fields and find modes with periods of a few years at parameters relevant to Earth's core. These fast Magneto-Coriolis modes show strong focusing of their kinetic and magnetic energy in the equatorial region, while maintaining a relatively large spatial structure along the azimuthal direction. Their properties agree with some of the observations and inferred core flows. We find additionally, in contrast to what has been assumed previously, that these modes are not affected significantly by magnetic diffusion. The model opens a new way of inverting geomagnetic observations to the flow and magnetic field deep within the Earth's outer core.</p>


2020 ◽  
Vol 6 (3) ◽  
pp. 56-72
Author(s):  
Aleksey Moiseev ◽  
Sergei Starodubtsev ◽  
Vladimir Mishin

We study the Pi3 pulsations (with a period T=15–30 min) that were recorded on December 8, 2017 at ground stations in the midnight sector of the magnetosphere at the latitude range of DP2 current system convective electrojets. We have found that Pi3 are especially pronounced in the pre-midnight sector with amplitude of up to 300 nT and duration of up to 2.5 hrs. The pulsation amplitude rapidly decreased with decreasing latitude from F′=72° to F′=63°. The event was recorded during the steady magnetospheric convection. In the southward Bz component of the interplanetary magnetic field, irregular oscillations were detected in the Pi3 frequency range. They correspond to slow magnetosonic waves occurring without noticeable variations in the dynamic pressure Pd. Ground-based geomagnetic observations have shown azimuthal propagation of pulsations with a 0.6–10.6 km/s velocity east and west of the midnight meridian. An analysis of the dynamics of pulsations along the meridian has revealed their propagation to the equator at a velocity 0.75–7.87 km/s. In the projection onto the magnetosphere, the velocities are close in magnitude to the observed propagation velocities of substorm injected electrons. In the dawn-side magnetosphere during ground-observed Pi3 pulsations, compression mode oscillations were recorded. We conclude that propagation of geomagnetic field oscillations in this event depends on the dynamics of particle injections under the action of a large-scale electric field of magnetospheric convection, which causes the plasma to move to Earth due to reconnection in the magnetotail. Small-scale oscillations in the magnetosphere were secondary, excited by the solar wind oscillations penetrating into the magnetosphere.


2020 ◽  
Vol 6 (3) ◽  
pp. 46-59
Author(s):  
Aleksey Moiseev ◽  
Sergei Starodubtsev ◽  
Vladimir Mishin

We study the Pi3 pulsations (with a period T=15–30 min) that were recorded on December 8, 2017 at ground stations in the midnight sector of the magnetosphere at the latitude range of DP2 current system convective electrojets. We have found that Pi3 are especially pronounced in the pre-midnight sector with amplitude of up to 300 nT and duration of up to 2.5 hrs. The pulsation amplitude rapidly decreased with decreasing latitude from F′=72° to F′=63°. The event was recorded during the steady magnetospheric convection. In the southward Bz component of the interplanetary magnetic field, irregular oscillations were detected in the Pi3 frequency range. They correspond to slow magnetosonic waves occurring without noticeable variations in the dynamic pressure Pd. Ground-based geomagnetic observations have shown azimuthal propagation of pulsations with a 0.6–10.6 km/s velocity east and west of the midnight meridian. An analysis of the dynamics of pulsations along the meridian has revealed their propagation to the equator at a velocity 0.75–7.87 km/s. In the projection onto the magnetosphere, the velocities are close in magnitude to the observed propagation velocities of substorm injected electrons. In the dawn-side magnetosphere during ground-observed Pi3 pulsations, compression mode oscillations were recorded. We conclude that propagation of geomagnetic field oscillations in this event depends on the dynamics of particle injections under the action of a large-scale electric field of magnetospheric convection, which causes the plasma to move to Earth due to reconnection in the magnetotail. Small-scale oscillations in the magnetosphere were secondary, excited by the solar wind oscillations penetrating into the magnetosphere.


Author(s):  
E. Joshua Rigler ◽  
Robyn A. D. Fiori ◽  
Antti A. Pulkkinen ◽  
Michael Wiltberger ◽  
Christopher Balch

2019 ◽  
Vol 12 (8) ◽  
pp. 3795-3803 ◽  
Author(s):  
Loïc Huder ◽  
Nicolas Gillet ◽  
Franck Thollard

Abstract. The pygeodyn package is a sequential geomagnetic data assimilation tool written in Python. It gives access to the core surface dynamics, controlled by geomagnetic observations, by means of a stochastic model anchored to geodynamo simulation statistics. The pygeodyn package aims to give access to a user-friendly and flexible data assimilation algorithm. It is designed to be tunable by the community by different means, including the following: the possibility to use embedded data and priors or to supply custom ones; tunable parameters through configuration files; and adapted documentation for several user profiles. In addition, output files are directly supported by the package webgeodyn that provides a set of visualization tools to explore the results of computations.


2019 ◽  
Author(s):  
Loïc Huder ◽  
Nicolas Gillet ◽  
Franck Thollard

Abstract. pygeodyn is a sequential geomagnetic data assimilation package written in Python. It gives access to the core surface dynamics, controlled by geomagnetic observations, by means of a stochastic model anchored to geodynamo simulation statistics. pygeodyn aims at giving access to a user-friendly and flexible data assimilation algorithm. It is designed to be tunable by the community by different means: possibility to use embedded data and priors, or to supply custom ones; tunable parameters through configuration files; adapted documentation for several user profiles. In addition, output files are directly supported by the package webgeodyn that provides a set of visualisation tools to explore the results of computations.


Sign in / Sign up

Export Citation Format

Share Document