Solar activity indices as a proxy for the variation of ionospheric Total Electron Content (TEC) over Bahir Dar, Ethiopia during the year 2010–2014

2017 ◽  
Vol 60 (6) ◽  
pp. 1237-1248
Author(s):  
Tsegaye Kassa ◽  
Samson Tilahun ◽  
Baylie Damtie
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 540 ◽  
Author(s):  
Hui Xi ◽  
Hu Jiang ◽  
Jiachun An ◽  
Zemin Wang ◽  
Xueyong Xu ◽  
...  

It is of great significance for the global navigation satellite system (GNSS) service to detect the polar ionospheric total electron content (TEC) and its variations, particularly under disturbed ionosphere conditions, including different phases of solar activity, the polar day and night alternation, the Weddell Sea anomaly (WSA) as well as geomagnetic storms. In this paper, four different models are utilized to map the ionospheric TEC over the Arctic and Antarctic for about one solar cycle: the polynomial (POLY) model, the generalized trigonometric series function (GTSF) model, the spherical harmonic (SH) model, and the spherical cap harmonic (SCH) model. Compared to other models, the SCH model has the best performance with ±0.8 TECU of residual mean value and 1.5–3.5 TECU of root mean square error. The spatiotemporal distributions and variations of the polar ionospheric TEC are investigated and compared under different ionosphere conditions in the Arctic and Antarctic. The results show that the solar activity significantly affects the TEC variations. During polar days, the ionospheric TEC is more active than it is during polar nights. In polar days over the Antarctic, the maximum value of TEC always appears at night in the Antarctic Peninsula and Weddell Sea area affected by the WSA. In the same year, the ionospheric TEC of the Antarctic has a larger amplitude of annual variation than that of the TEC in the Arctic. In addition, the evolution of the ionization patch during a geomagnetic storm over the Antarctic can be clearly tracked employing the SCH model, which appears to be adequate for mapping the polar TEC, and provides a sound basis for further automatic identification of ionization patches.


Sign in / Sign up

Export Citation Format

Share Document