scholarly journals Evidence of Jovian active longitude: 3. Observational constraints

2010 ◽  
Vol 115 (A12) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. H. M. Galopeau ◽  
M. Y. Boudjada
1999 ◽  
Vol 516 (2) ◽  
pp. 939-945 ◽  
Author(s):  
Th. Straus ◽  
G. Severino ◽  
F.‐L. Deubner ◽  
B. Fleck ◽  
S. M. Jefferies ◽  
...  

1998 ◽  
Vol 495 (2) ◽  
pp. 609-616 ◽  
Author(s):  
Kyu‐Hyun Chae ◽  
David A. Turnshek ◽  
Valery K. Khersonsky

1992 ◽  
Vol 128 ◽  
pp. 56-77 ◽  
Author(s):  
Jonathan Arons

AbstractI survey recent theoretical work on the structure of the magnetospheres of rotation-powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research.


2021 ◽  
Vol 502 (2) ◽  
pp. 2807-2814
Author(s):  
Martin G H Krause ◽  
Martin J Hardcastle

ABSTRACT The ARCADE 2 balloon bolometer along with a number of other instruments have detected what appears to be a radio synchrotron background at frequencies below about 3 GHz. Neither extragalactic radio sources nor diffuse Galactic emission can currently account for this finding. We use the locally measured cosmic ray electron population, demodulated for effects of the Solar wind, and other observational constraints combined with a turbulent magnetic field model to predict the radio synchrotron emission for the Local Bubble. We find that the spectral index of the modelled radio emission is roughly consistent with the radio background. Our model can approximately reproduce the observed antenna temperatures for a mean magnetic field strength B between 3 and 5 nT. We argue that this would not violate observational constraints from pulsar measurements. However, the curvature in the predicted spectrum would mean that other, so far unknown sources would have to contribute below 100 MHz. Also, the magnetic energy density would then dominate over thermal and cosmic ray electron energy density, likely causing an inverse magnetic cascade with large variations of the radio emission in different sky directions as well as high polarization. We argue that this disagrees with several observations and thus that the magnetic field is probably much lower, quite possibly limited by equipartition with the energy density in relativistic or thermal particles (B = 0.2−0.6 nT). In the latter case, we predict a contribution of the Local Bubble to the unexplained radio background at most at the per cent level.


Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document