holographic dark energy
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 155)

H-INDEX

59
(FIVE YEARS 11)

2022 ◽  
Vol 21 (12) ◽  
pp. 317
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Ertan Güdekli

Abstract The work reported in this paper demonstrates the cosmology of f(Q) gravity and the reconstruction of various associated parameters with different versions of holographic dark energy with generalized cut-offs, where Q = 6 H 2. The Universe is considered to be filled with viscous fluid characterized by a viscous pressure Π = – 3 H ξ, where ξ = ξ 0 + ξ 1 H + ξ 2 ( H ˙ + H 2 ) and H is the Hubble parameter. Considering the power law form of expansion, we have derived the expression of f(Q) under a non-viscous holographic framework and it is then extended to viscous cosmological settings with extended generalized holographic Ricci dark energy. The forms of f(Q) for both the cases are found to be monotonically increasing functions of Q. In the viscous holographic framework, f(Q) is reconstructed as a function of cosmic time t and is found to stay at a positive level with Nojiri-Odintsov cut-off. In these cosmological settings, the slow roll parameters are computed and a scope of exit from inflation and quasi-exponential expansion are found to be available. Finally, it is observed that warm inflationary expansion can be obtained from this model.


Author(s):  
Anirudh Pradhan ◽  
Vinod Kumar Bhardwaj ◽  
Archana Dixit ◽  
Syamala Krishnannair

In this paper, we examine the LRS Bianchi-type-I cosmological model with holographic dark energy. The exact solutions to the corresponding field equations are obtained by using the generalized hybrid expansion law (HEL). The EoS parameter [Formula: see text] for DE is found to be time-dependent and redshift-dependent and its exiting range for derived model is agreeing well with the current observations. Here, we likewise apply two mathematical diagnostics, the statefinders ([Formula: see text]) and [Formula: see text] plan to segregate HDE model from the [Formula: see text]CDM model. Here, the [Formula: see text] diagnostic trajectories are good tools to classify the dynamical DE model. We found that our model lies in both thawing region and freezing region. We also construct the potential as well as dynamics of the quintessence and tachyon scalar field. Some physical and geometric properties of this model along with the physical acceptability of cosmological solution have been discussed in detail.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Priyanka Adhikary ◽  
Sudipta Das ◽  
Spyros Basilakos ◽  
Emmanuel N. Saridakis

2021 ◽  
pp. 136844
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov ◽  
Tanmoy Paul

Author(s):  
Umesh Kumar Sharma ◽  
Vipin Chandra Dubey ◽  
A. H. Ziaie ◽  
H. Moradpour

Author(s):  
D. Gemici-Deveci ◽  
E. Aydiner

In this study, we consider an holographic dark energy and dark matter interacting model in the Bianchi Type-V universe with a stretched exponential scale factor. We obtain the Hubble, shear, deceleration, and equation of state parameters based on the presented model and give the numerical solutions. We show that the anisotropy in the early universe plays an important role in the time evolution of the universe. Furthermore, we show that an interacting anisotropic model with stretched exponential scale factors can explain all epochs of the universe.


Author(s):  
Umesh Kumar Sharma ◽  
Vipin Chandra Dubey

In this work, we study the Rényi holographic dark energy (RHDE) model in a flat FRW Universe where the infrared cut-off is taken care by the Hubble horizon and also by taking three different parametrizations of the interaction term between the dark matter and the dark energy. Analyzing graphically, the behavior of some cosmological parameters in particular deceleration parameter, equation of state (EoS) parameter, energy density parameter and squared speed of sound, in the process of the cosmic evolution, is found to be leading towards the late-time accelerated expansion of the RHDE model. Also, we find the departure for the derived models from the standard [Formula: see text]CDM model according to the evolution of jerk parameter. Moreover, we compare the model parameters by considering the observational Hubble data which consist of 51 points in the redshift range [Formula: see text].


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 428
Author(s):  
Sarfraz Ali ◽  
Muhammad Hummad Waheed ◽  
Muhammad Imran Asjad ◽  
Khuram Ali Khan ◽  
Thanin Sitthiwirattham ◽  
...  

The Sharma–Mittal holographic dark energy model is investigated in this paper using the Chern–Simons modified gravity theory. We investigate several cosmic parameters, including the deceleration, equation of state, square of sound speed, and energy density. According to the deceleration parameter, the universe is in an decelerating and expanding phase known as de Sitter expansion. The Sharma–Mittal HDE model supports a deceleration to acceleration transition that is compatible with the observational data. The EoS depicts the universe’s dominance era through a number of components, such as ω=0, 13, 1, which indicate that the universe is influenced by dust, radiation, and stiff fluid, while −1<ω<13, ω=−1, and ω<−1 are conditions for quintessence DE, ΛCDM, and Phantom era dominance. Our findings indicate that the universe is in an accelerated expansion phase, and this is similar to the observational data.


Sign in / Sign up

Export Citation Format

Share Document