cloud feedback
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 32)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Grégory V. Cesana ◽  
Andrew S. Ackerman ◽  
Ann M. Fridlind ◽  
Israel Silber ◽  
Maxwell Kelley

2021 ◽  
Vol 14 (9) ◽  
pp. 5355-5372
Author(s):  
John G. Virgin ◽  
Christopher G. Fletcher ◽  
Jason N. S. Cole ◽  
Knut von Salzen ◽  
Toni Mitovski

Abstract. The newest iteration of the Canadian Earth System Model (CanESM5.0.3) has an effective climate sensitivity (EffCS) of 5.65 K, which is a 54 % increase relative to the model's previous version (CanESM2 – 3.67 K), and the highest sensitivity of all current models participating in the sixth phase of the coupled model inter-comparison project (CMIP6). Here, we explore the underlying causes behind CanESM5's increased EffCS via comparison of forcing and feedbacks between CanESM2 and CanESM5. We find only modest differences in radiative forcing as a response to CO2 between model versions. We find small increases in the surface albedo and longwave cloud feedback, as well as a substantial increase in the SW cloud feedback in CanESM5. Through the use of cloud area fraction output and cloud radiative kernels, we find that more positive low and non-low shortwave cloud feedbacks – particularly with regards to low clouds across the equatorial Pacific, as well as subtropical and extratropical free troposphere cloud optical depth – are the dominant contributors to CanESM5's increased climate sensitivity. Additional simulations with prescribed sea surface temperatures reveal that the spatial pattern of surface temperature change exerts controls on the magnitude and spatial distribution of low-cloud fraction response but does not fully explain the increased EffCS in CanESM5. The results from CanESM5 are consistent with increased EffCS in several other CMIP6 models, which has been primarily attributed to changes in shortwave cloud feedbacks.


2021 ◽  
pp. 1-49
Author(s):  
So-Won Park ◽  
Jong-Seong Kug ◽  
Sang-Yoon Jun ◽  
Su-Jong Jeong ◽  
Jin-Soo Kim

AbstractStomatal closure is a major physiological response to the increasing atmospheric carbon dioxide (CO2), which can lead to surface warming by regulating surface energy fluxes—a phenomenon known as CO2 physiological forcing. The magnitude of land surface warming caused by physiological forcing is substantial and varies across models. Here we assess the continental warming response to CO2 physiological forcing and quantify the resultant climate feedback using carbon–climate simulations from phases 5 and 6 of the Coupled Model Intercomparison Project, with a focus on identifying the cause of inter-model spread. It is demonstrated that the continental (40°–70°N) warming response to the physiological forcing in summer (~0.55 K) is amplified primarily due to cloud feedback (~1.05 K), whereas the other climate feedbacks, ranged from –0.57 K to 0.20 K, show relatively minor contributions. In addition, the strength of cloud feedback varies considerably across models, which plays a primary role in leading large diversity of the continental warming response to the physiological forcing.


2021 ◽  
Vol 118 (30) ◽  
pp. e2026290118
Author(s):  
Paulo Ceppi ◽  
Peer Nowack

Global warming drives changes in Earth’s cloud cover, which, in turn, may amplify or dampen climate change. This “cloud feedback” is the single most important cause of uncertainty in Equilibrium Climate Sensitivity (ECS)—the equilibrium global warming following a doubling of atmospheric carbon dioxide. Using data from Earth observations and climate model simulations, we here develop a statistical learning analysis of how clouds respond to changes in the environment. We show that global cloud feedback is dominated by the sensitivity of clouds to surface temperature and tropospheric stability. Considering changes in just these two factors, we are able to constrain global cloud feedback to 0.43 ± 0.35 W⋅m−2⋅K−1 (90% confidence), implying a robustly amplifying effect of clouds on global warming and only a 0.5% chance of ECS below 2 K. We thus anticipate that our approach will enable tighter constraints on climate change projections, including its manifold socioeconomic and ecological impacts.


2021 ◽  
Vol 16 (7) ◽  
pp. 074015
Author(s):  
N Hirota ◽  
T Ogura ◽  
H Shiogama ◽  
P Caldwell ◽  
M Watanabe ◽  
...  

Author(s):  
Johannes Mülmenstädt ◽  
Marc Salzmann ◽  
Jennifer E. Kay ◽  
Mark D. Zelinka ◽  
Po-Lun Ma ◽  
...  
Keyword(s):  

Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

2021 ◽  
Author(s):  
Jennifer Kay

<p>Understanding the influence of clouds and precipitation on global warming remains an important unsolved research problem. This talk presents an overview of this topic, with a focus on recent observations, theory, and modeling results for polar clouds. After a general introduction, experiments that disable cloud radiative feedbacks or “lock the clouds” within a state‐of‐the‐art,  well‐documented, and observationally vetted climate model will be presented. Through comparison of idealized greenhouse warming experiments with and without cloud locking, the sign and magnitude cloud feedbacks can be quantified. Global cloud feedbacks increase both global and Arctic warming by around 25%. In contrast, disabling Arctic cloud feedbacks has a negligible influence on both Arctic and global surface warming. Do observations and theory support a positive global cloud feedback and a weak Arctic cloud feedback?  How does precipitation affect polar cloud feedbacks? What are the implications especially for climate change in polar regions?  </p>


Sign in / Sign up

Export Citation Format

Share Document